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ABSTRACT

An algorithm is described for automatic computation of a
quadratic estimate of the domain of stability for the stable
equilibrium states of nonlinear systems of ordinary differential
equations. The study was motivated by the failure of standard linear
stability analysis techniques to predict adequately the stability
- of the current NASA Orbiting Astronomical Observatory (OAO) coarse
pointing mode control system. Since a new version of this par-
ticular control system was used for the primary feasibility test
of the algorithm, modeling and simulation results for -this control
system are reported. In developing the algorithm various minimiza-
tion and random search techniques were utilized to solve the min-
max problem which yields the estimate; the result of the reported
experimentation and evaluation was rejection of gradient search
and penalty function techniques as being inapplicable to this par-
ticular problem and high order nonlinear problems in general. The
new methods developed and described here are the first known ex-
ample of solving a min-max problem via two random searches. The
algorithm has been extensively tested, and although apparently
expensive in machine time it is potentially more cost-effective
than simulation, which is the only competitive technique for high
order systems. Noteworthy is the fact that methods used by several
authors for problems of dimension n = 2, 3, and 4 and that are
claimed to '"generalize easily" to higher dimensions are not feasi-
ble for complicated physical systems with n =6 or n = 9, the
practical cases considered here.

The modeling and simulation studies show that the choice of
sensor (star tracker) model has a significant bearing on the dif-
ficulty of the stability analysis, and that neither the linear
approximation nor the Popov approximation (linear part plus satu-
rations) adequately represents the system stability properties.
Thus the numerical algorithm developed is necessary for the sta-
bility analysis of this system.

In examining the use of Luré-Liapunov functions and perturba-
tion techniques to obtain an improved estimate it is shown that
the Popov approximation cannot be analyzed completely with the
available frequency domain techniques and that computational aids
are required to effectively apply frequency domain techniques to
this complex physical problem.

The problems of numerically solving the Liapunov matrix equa-
tion and generating arbitrary positive definite matrices were
solved in the development of the algorithm.
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AN ALGORITHM FOR LIAPUNOV STABILITY ANALYSIS OF
COMPLEX NONLINEAR SYSTEMS WITH APPLICATION TO
THE ORBITING ASTRONOMICAL OBSERVATORY

Gunther R. Geiss,T Victor D. Cohen, Robert D'heedene,
David Rothschild, and Arthur Chomas

Grumman Aerospace Corporation
Bethpage, New York 11714

1. SUMMARY

This report describes the development of a numerical algorithm
for determining the stability of nonlinear systems and its applica-
tion to the "paired-tracker" attitude control system that has been
proposed for the NASA Orbiting Astronomical Observatory (0AO). The
objectives of the study were: 1) to demonstrate the feasibility
of the algorithm in a nonacademic setting; and 2) to provide a
tool for use in the analysis/design and operational parts of the
OAO program. The study was motivated by the failure of standard
linear analysis to adequately predict the stability of the present
OAQO attitude control system. Prior research indicated that the
algorithm would provide results with higher confidence levels than
simulation, which was the principal tool being used.

The algorithm is based on Liapunov stability theory and is
applicable to systems that are described by a set of quasilinear
differential equations of the form

x = Ax + g (x) (1-1)

where x 1s the n wvector of state variables, A 1is a stable
matrix, g(x) 1is at least of order xz, and x = 0 1is the
equilibrium point of interest [i.e., g(0) = 0]. This admits most
systems that are designed by techniques currently used. The ob-
jective is to determine or estimate the set of initial states from

TPresently with Poseidon Scientific Corporation, Hauppauge, N.Y. 11787



which the system will return to the equilibrium state x = 0,
i.e., to estimate the domain of attraction of the equilibrium

state.

The objective is achieved by using LaSalle's theorem on the
extent of asymptotic stability. Basically, the theorem states
that if a Liapunov function V(x) and its total time derivative
have certain properties within the set §, of states x such
that V() < 4, where ¢ is a constant, then all trajectories
beginning in §, tend toward the equilibrium x = 0. The problem
of finding such a Liapunov function V(x) 1is resolved by re-
stricting consideration to positive definite quadratic forms. The
largest value of [/ for which the required conditions hold gives
the best estimate relative to that particular quadratic form.

This value is found to be the solution of a constrained minimum
problem. To eliminate the dependence of the quality of the esti-
mate on the arbitrarily chosen quadratic form, the enclosed volume
of the estimate is chosen as the objective function to be maximized
to obtain the optimal quadratic form. The result of the computa-
tions is a hyperellipsoidal estimate of the domain of attraction
of x =0 (i.e., the optimal quadratic estimate of the domain of
attraction).

The equations describing the "paired-tracker" coarse pointing
mode attitude control system of the OAQ are derived and used as
the test problem for determining the feasibility of the algorithm.
This system is quite complex and highly nonlinear. It is described
by nine state variables which are related through nonlinear dif-
ferential equations representing the nonlinear mechanics, actuator
saturation, and transcendental sensor relations. Two models are
derived for the sensors and one is shown to introduce unnecessary
complications in the stability analysis. It is also shown via
simulation results that neither the linear approximation, nor the
analytically attractive Popov approximation (linear part plus the
saturation) adequately represents the system stability properties.

In developing the algorithm for application to this non-
academic complex problem it was necessary to solve four major com-
putational problems efficiently. These problems are: 1) genera-
tion of arbitrary positive definite matrices; 2) solution of the
Liapunov matrix equation; 3) solution of the nine variable con-
strained minimum problem; and 4) solution of the forty-five
variable maximization problem. The first was accomplished by de-
veloping a parameterization of the set of positive definite
matrices. The second was solved by selecting from the four avail-
able techniques the one with the least error growth with increased



system dimension. The third was solved by devising an efficient
random search tailored to the geometry of the problem. This was
done subsequent to determining that the widely used gradient
search techniques and penalty function methods are totally in-
applicable to this problem. The fourth problem was partially
solved via an "accelerated random search." Again, gradient tech-
niques are totally inapplicable to this complex high dimensional
problem.

The algorithm is shown to be feasible for solution of this
complex nonlinear stability analysis problem. However, the state
of the art in search techniques for complex high dimensional prob-
lems severely limits its immediate application as an analytical or
operational tool. It is shown that compared to simulation, the
only other currently available tool, it promises to produce a
lower cost solution with specified confidence or conversely to
produce a higher confidence result for a given cost.

In the course of examining the use of Luré-Liapunov functions
to obtain an improved estimate it is shown that the Popov approxi-
mation to the system model cannot be completely analyzed with the
available frequency domain techniques. It is also noted that com-
putational aids are required if frequency domain techniques are to
be effectively applied to a system of this dimension.



2. INTRODUCTION

This report describes the development of a numerical algorithm
for estimating the domain of stability of complex nonlinear sys-
tems, and its application to a particular satellite attitude con-
trol problem. Specifically, the algorithm estimates the set of
initial states from which a given system will settle on a desired
equilibrium condition. That is, it estimates the domain of attrac-
tion of an equilibrium solution of the system of differential
equations used to describe the physical system. The development
was initiated because simulation showed that standard linear analy-
sis failed to predict accurately the stability of the present NASA
Orbiting Astronomical Observatory (0AQO) coarse pointing mode con-
trol system. 1In addition, the algorithm promised results with
‘higher confidence levels than reasonably possible via simulation.
Simulation only provides representative operating records for a
selected sample of the possible initial states and system parame-
ters. The sample is necessarily limited by time and budget con-
straints. Thus, for a complex nonlinear system, the confidence in
the conclusions drawn from simulation experiments is often less
than desired. .

The particular system design examined is the "paired-tracker"
design of Doolin and Showman [l, 2]. This system is a very com-
plex and highly nonlinear system that provides an excellent example
for testing the true mettle of the algorithm. The model used to
represent the system has nine state variables and accounts for the
nonlinear characteristics of the actuators, vehicle, sensors, and
error processor. The algorithm is based on the use of quadratic
form Liapunov functions to estimate the domain of stability of the
system in state space and to determine the quadratic form that
maximizes the volume of the estimate. (This concept was first
described in [3].) The result is a hyperellipsoid that is the
optimal quadratic estimate of the domain of stability. The algo-
rithm itself is applicable to a wide variety of complex nonlinear
systems and is in no way limited to the attitude control system
described here.

The objectives of the study were: 1) to determine the feasi-
bility of using this method of stability analysis on a complex
physical problem, and 2) to develop a new tool to be used in the
design/analysis and operation of the specific system. The first
objective arose from the conviction that it is utterly naive to
assume, as is often done, that if a technique is shown to solve a
few simple academic problems it can then easily be extended to



solve complex physical problems successfully. The second objec-
tive developed because it became apparent upon reviewing the
design/analysis of the present QAQO coarse pointing mode system
that there were no applicable analytical techniques for stability
analysis and that simulation could not yield the required level of
confidence in the results. The nature of the system is such that
the effect on system stability of new vehicle commands must be
assessed on the ground during a flight and so the tool used in
analysis/design would also likely be used in operations. Thus if
the algorithm proved to be feasible and provided, as it should,
more confidence than simulation results, it would become a signifi-
cant tool in the QA0 program.

The algorithm is based on Liapunov stability theory, the only
available sufficiently general approach to nonlinear system sta-
bility analysis. The primary difficulty in application of the
theory is the construction of an appropriate Liapunov function.
This difficulty 1is eliminated by restricting consideration to pos-
itive definite quadratic form Liapunov functions. This restric-
tion is substantial, but it results in an estimate that is always
an ellipsoid in n-space, and is often a better estimate than
those obtained with more complex functions [4, 5]. The fact that
the estimate is always a hyperellipsoid means it is easier to
visualize and interpret than other estimates, and some of the com-
putations are simplified.

The report is organized as follows. In Section 3 the problem
of estimating the domain of attraction of an equilibrjum solution
is formulated and the requisite parts of Liapunov stability theory
are presented. The optimal quadratic estimate is formulated as a
min-max problem and the structure of an algorithm to solve the
problem is outlined. The solutions of four specific computational
problems are presented, namely, the generation of positive definite
matrices, solution of the Liapunov equation, solution of the mini-
mum problem, and solution of the maximum problem.

Section 4 displays the formulation of the system state equa-
tions, a reduced state approximation, and an approximation suitable
for Popov type analysis. The result of comparing these models by
simulation is that neither the linear approximation nor the Popov
approximation adequately represents the stability properties of the
system.

The computational procedures and over-all program description
are presented in Section 5. It is shown here that gradient search
techniques are totally inapplicable to the min-max problem. The




method of interpreting the program results is described and some
representative results are given for the complete nine dimensional
model and the six dimensional reduced state model. The algorithm
is then compared to simulation on the basis of cost to achieve a
similar level of confidence.

In Section 6, the conclusions of the feasibility evaluation of
the algorithm are presented, along with some conclusions on the
state of the art in search techniques and in the stability analysis
of complex nonlinear physical problems. This leads to identifica-
tion of some problems requiring further attention.

The appendices present details of various parts of the study
that were too complicated for the body of the report. Appendix A
gives details of the system model derivation and the derivation
of its approximations. Simulation results are illustrated in
Appendix B. In Appendix C the linear model is analyzed and the
Popov approximation is only partially analyzed because of the limi-
tations in the current state of the art in frequency domain tech-
niques. Appendix D reports details of solutions of computational
problems and outlines reasons for inapplicability of gradient
searches and penalty function techniques. The way to interpret
the numerical results is described in Appendix E. In Appendix F,
a variant on the algorithm is presented, along with an outline of
the use of Luré-Liapunov functions for obtaining an improved esti-
mate. Finally, Appendix G gives flow charts for the algorithm.
FORTRAN IV program listings are available upon request from the
Research Department, Grumman Aerospace Corporation, Bethpage, New
York 11714,



3. OPTIMAL QUADRATIC ESTIMATION OF THE DOMAIN OF ATTRACTION

This section is devoted to describing the theory of optimal
quadratic estimation of the domain of attraction, the structure of
an algorithm for obtaining the estimate, and presenting solutions
of associated computational problems. The reader is assumed to be
familiar with fundamental Liapunov stability theory, say [6].

It is assumed that the physical system is described by a
quasilinear vector differential equation of the form

x = Ax + g(x) (3-1)

where the dot denotes differentiation with respect to time ¢,

x = x(t) 1is the n x 1 real state vector, A is the matrix of
the linear part which is stable, x(t) = 0 is an equilibrium
solution, and g(x) contains no linear terms, i.e., denoting the
eigenvalues of A by 7;(4),

Re (2, (4)) <0 (1=1, 2, ..., n)
g(0) =0 (3-2)

1in lEGO1_

x - 0

These assumptions are not restrictive with respect to engineered
systems. Since virtually all design techniques are based upon
linear systems analysis, an engineered lumped parameter system
will almost always be representable by (3-1) and meet the assump-
tions of (3-2). The latter simply state that the linearization of
the system has its poles in the left half plane, the equilibrium
solution (ﬁe = 0) can be shifted to the origin by the translation
%’ = X - Xo, and the power series expansion of g(x) has no lin-

ear terms.

The domain of attraction JS5(0) of the equilibrium solution
x = 0 1is the set of initial states from which all trajectories
settle to zero as time tends to infinity, i.e.,




H(0) = Jxolx(t; Xo)-e 0_ as t - w} (3-3)

1

where =x(t,x,) denotes the unique solution of (3-1) such that
x(0) = x5. The assumptions that A 1is a stable matrix and g(x)
has no linear part mean that x = 0 1is an asymptotically stable
solution of (3-1) and thus J4(0) is a nonempty set. In the event
that 4(0) 1is the whole space, x = 0 1is said to be globally
asymptotically stable and there can be no other equilibrium solu-
tion. Many nonlinear systems are not globally asymptotically
stable and the problem then is to determine 4£(0) for given sys-
tem parameter values. This is the problem treated here.

The two most frequently used approaches to determining 45 (0)
are the Zubov method and the LaSalle theory. The Zubov method
requires solution of a partial differential equation which con-
tains an arbitrary function. The solution is directly dependent
on the arbitrary function and is usually obtained via a power
series. If the solution can be obtained in closed form the domain
H(0) 1is obtained exactly; however, this is rarely the case and
each truncation of the series solution provides an estimate of
H(0). The convergence of the series usually is nonuniform and is
dependent on an arbitrary function. Often the first term of the
series (which is a quadratic form) provides a better estimate than
higher order estimates. Further, higher order estimates are hard
to visualize and interpret. Finally, the series solution requires
that g(x) be expressed as a power series [4], which can be ex-
tremely tedious in a complex problem. This led to the concept
[3, 5] of developing the optimal quadratic estimate which would
provide suitable engineering estimates, easier visualization and
interpretation, and simpler computation.

The LaSalle theory is summarized in his theorem on the extent
of asymptotic stability [6].

Theorem: Let V(x) be a scalar function with
continuous first partial derivatives. Let
Qp = {(x]V(x) < 4} designate the region where
V(x) < 4. Assume that 2y 1is bounded and that
within Qg:
vV(x) >0 for x #0
(3-4)
Vi) <0 for x # 0



Then the origin is asymptotically stable, and
above all, every solution in jy tends to
the origin as t — o,

Since the function V(x) 1is at our disposal we choose the
simplest one, i.e., a positive definite quadratic form,

V(x) = x'Px , P>0 . (3-5)

Others [7, 8] have tried the Luré-Liapunov function
X
V(x) = x'Px + | g (x)dx (3-6)

0

but use of (3-6) requires either proving positivity of (3-6) for
given g(x) or limiting g(x) to the class of functions for which
V(x), in (3-6), is positive definite. Neither seems a suitable
alternative. In any event, the estimate ), will be much more
complex to visualize and interpret if (3-6) is used. The use of
(3-5) guarantees that V(x) >0 for x # 0, and that Qy is
bounded since Qj, 1is always a hyperellipsoid. Using (3-5) and
(3-1) yields

V(x) = - x1Qx + 2x'Pg(x) (3-7)
where

ATp + PA = - q . (3-8)

Equation (3-8) is called_ the Liapunov matrix equation. If Q 1is
positive definite then V(x) < 0 in a neighborhood of x = 0
since g(x) 1is of the order of x4. Given a positive definite Q
and a stable A the solution P of (3-8) is always positive
definite. Thus, it remains to specify { such that V(&) < 0 1in
Q. That is, find the largest ¢ such that the condition holds
or, equivalently, since the ellipsoids {, are concentric and

nested, find the least value of V(&) on V(x) = 0. The equiva-
lence is indicated in Fig. 3-1.



x.2 C1< C2<C3= 1<C4
C

c
V=0 __.3 2

Fig. 3-1 Two Dimensional Representation of Problem Geometry

Thus, we define

NS
I

min V(x)
x € E
(3-9)

E {xl&(x) =0, x # 0}

i.e., as the solution of a constrained minimum problem. The
origin is excluded because it yields the trivial solution £ = 0.

The value of / and thus the estimate Q; are functions of

Q, through P and the Liapunov equation. To remove this depen-
dence on an arbitrary matrix we define the optimal matrix, QO°,

to be the one which produces the estimate with the largest volume.
The volume of the estimate is proportional to

n

SORNINCwoy
i=1

=

1
2

- (&9 (3-10)

10



i.e., the product of-the semiaxes of Q and thus

z’

(Vi

3(@Q®) = max J(@Q) = max (dgn =) . (3-11)
Q>0 Q >0 "¢

The optimal quadratic estimate, Q;’ is obtained by solving
(3-9) and (3-11), which form a min-max problem. The algorithm
that solves this problem must, in the process, solve the following
problems: 1) generate arbitrary elements, Q, of the set of
positive definite matrices; 2) solve the Liapunov equation (3-8);
3) solve the minimum problem (3-9) fcr each Q; and 4) determine
the optimal Q according to (3-11). The way in which { and Q
are related means that problem 4) must be solved by repeatedly
solving problem 3). (Another approach to this problem based on
selecting P matrices is given in Appendix F.)

The matrices Q are generated as positive definite matrices
by recognizing their orthogonal similarity to a diagonal matrix
with positive eigenvalues, i.e.,

Q=sTas , sls=1

(3-12)

=
I

diag IK cees A } ’ %i >0, i=1,2, ..., n .

The matrices S are generated as a product of simple rotation
matrices by utilizing a parameterization of unitary matrices given
by Murnaghan [9]. (The details are given in Appendix D.) The
n X n matrix Q is then specified by n(n + 1)/2 parameters

the number of free elements in a symmetric matrix) and formed by
(n(n - 1)/2) + 1 matrix multiplications.

There are at present writing four methods of solving the
Liapunov equation. Comparison of the four, based on increase in
error and computation time with increase in dimension, happens to
lead to selection of the least elegant approach. Although it is
the most time consuming it suffers least from increase in error
with increase in dimension. The solution arises from recognizing
that if the Liapunov equation is written as a vector equation (P
and Q reordered as n2 x 1 matrices) a simple pattern appears,
viz.,

11



[ P1q] 1]
pln q1n
Py 9on
Amod : =- : s (3-13)
pnl qnl
Lpnn ann
where
A = AT® I + I @AT (3-14)
mod n n < ’

X" 1is the Kronecker product and I, 1is the n X n identity

-

matrix, i.e., if n = 2

_ T, §
allIZ + A ' a2112
]
— l -
Amod = L - - - - — 4 = = = — = . (3-15)
' T
I a1212 : a2212 + A

Thus, P is obtained by forming Ayoq, calculating its inverse,
calculating the elements of P according to (3-13) and restructur-
ing P. (See Appendix D for details.)

The determination of an estimate, given the matrix Q, i.e.,
the calculation of / wvia

¢ = min V()
X € E
. (3-9)
E = {xlv(x) =0, x ¢ 0}

12



can be carried out via a gradient search-penalty function technique
or a specially developed random search. 1In the first approach the
constraints of the problem are eliminated by replacing them with
penalty terms, i.e., by redefining £ as

¢ = min (V(x))nl + Ky (\}(x))z + k, (p(x))2 (3-16)
X

where nj= 1 or 2, k3 and ko .are positive, the second term

is the penalty for straying from V(x) = 0, and the third term is
the penalty for nearing x = 0. In theory, if ki and ky tend
to infinity then ¢ of (3-16) approaches ¢ of (3-9). In prac-
tice the selection of ki and ks is a very delicate matter

since if they are too large the function V(x) is "masked" and if
too small the penalties are not severe enough and a search will
wander away from the constraint surface and possibly toward the
point x = 0. This is an important practical problem because as a
rule the range of the functions in (3-16) is not known for a given
domain of their arguments, even to orders of magnitude, without
expending substantial additional computational effort. In any
event, the term p(x) tends to introduce unknown local minima

near the origin, which, as any other local minima, act as a trap
for a gradient type search. [One can visualize this by considering
p(x) to be an inverted cup in the bowl V(x).] Gradient searches
are inapplicable to this problem because of the many local minima,
the superior attractiveness of the trivial solution at x = 0, and
the difficulty of obtaining the gradient of the expression in
parentheses in (3-16) either analytically or numerically.

The random search, which was initially developed to provide a
method for certifying that the computed value was in fact the solu-
tion, actually became a more effective tool for solving the prob-
lem. It utilizes the basic geometry of the problem as portrayed in
Fig. 3-1. A large value Vg is chosen, the ellipsoid V(x) = V,
is constructed and points x are selected at random from the cir-
cumscribed box, then the logical pattern of Fig. 3-2 is followed.

The net result is that the search is always conducted in a
succeedingly smaller box circumscribed about an ellipsoid and the
random search looks for a point where V(x) > 0 from which a one
dimensional search along the line from x to the origin proceeds
to find V(x) = 0. At that point a new smaller ellipsoid is de-
fined and the procedure is repeated.

13
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Defiie Select Random Yes Yes
ViX) =V + X, Calcuhbte \
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No No
i [Bi-Section Search -
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V. .= V&’) < ‘ \(;(a’)‘i’)cu'ate F— for V(X): 0 —
j*l Output X

Fig. 3-2 Schematic of Random Search Procedure

The determination of the optimal matrix, Qo, is much more
difficult because of the higher dimension of the problem,
n(n + 1)/2 versus n, and the lack of any knowledge of the prob-
lem geometry. This problem was attacked via a modification of the
"accelerated random search" described by Barron [10]. Basically,
the process is a one dimensional deterministic search along a
randomly selected direction. The procedure is to select, from a
specified distribution, a set of perturbations on a starting point;
if an improvement is achieved, continue searching in the same
direction and double the step size each time until no further im-
provement is obtained. TIf no improvement is obtained on the first
step, reverse direction and proceed as above. If neither direc-
tion yields an improvement, select a new set of perturbations.
The acceleration is obtained from doubling the step sizes in the
successful direction. In addition, the distribution is "narrowed
down" as success is achieved; this provides a finer search toward
the end. We have added the capability to "widen" the distribution
if no success is achieved after a certain number of trials. This
makes possible "jumping out”" of local minima in which the search

14



may become trapped if the perturbations are too small. The details
of these searches may be found in Appendix D. Gradient searches
are inapplicable to the maximization problem because of its dimen-
sion. In the 45 dimensional space of Q, 45 random samples pro-
duce more useful global information than the 45 perturbations re-
quired to numerically evaluate the gradient of (3-10)at one point,
which cannot be obtained analytically.
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4. MODELING OF THE OAO "PAIRED-TRACKER"
COARSE POINTING MODE ATTITUDE CONTROL SYSTEM

This section presents a summary of the derivation of the sys-
tem model, the formulation of the state equation in the required
form, and some approximations to the state equation.

A model is needed to represent the actual hardware and space-
craft dynamics in mathematical form. Although modeling of the OAQ
had been done prior to this study, a rederivation was performed
to provide a physical "feel" for the model and an appreciation of
the approximations necessary to create a useful and usable model.

A digital simulation is used to verify stability or lack of
it for various cases for comparison with the estimate produced by
the algorithm. It is also used to compare the various simplified
models with the principal one.

The derivation of the system model will be considered first.
It will be seen that the choice of sensor model greatly affects
the difficulty in performing the analysis. The basic block diagram
is given in Fig. 4-1.

The OAO coarse pointing mode attitude control system uses
inertia wheels to supply control torques and momentum storage.
Vehicle attitude is sensed by star trackers, whose output is
processed and put through a compensator to generate attitude plus
derived rate information. The compensator output drives the momentum
wheel motors. In effect this system is a momentum regulator with
an equilibrium described by zero body rates and an attitude at or
near the one desired.

To derive a model that is of practical use some basic assump-
tions must be made. The assumptions that follow lead to simplifi-
cations in the model, but they must be justified by a demonstration
that the model behaves essentially like the real system.

1. The vector between the spacecraft and a guide star ex-
pressed in inertial coordinates is assumed to be constant indepen-
dent of orbit position. That is to say, parallax effects are
neglected. This assumption is borne out by the fact that the
parallax to the nearest star (not our sun) is only 0.75 sec of
arc.
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L Error < 452 Trackers (e
Error Processor Gimbal Angle 1& 2 )
Signals Errors
Trackers 1 & 2
Commanded
Gimbal Angles
Y1c B1c 7 2c B2
Fig. 4-1 Block Diagram of Basic Model
2. The dynamics of the gimbaled star tracker, basically a
if included,

Analysis has shown that the lag,

lag, is neglected.
The lag break occurs approxi-

has no effect on spacecraft dynamics.
mately one decade beyond the region of spacecraft response.

The saturation and quantization in the star tracker readout

3.
This assumption was an

(digitizer logic unit, DLU) are ignored.
imposed ground rule of the study, and was based on the expectation

of using a DLU with a larger linear range. The quantization has
negligible effect on stability.

4. The gyroscopic torques of the control wheels are neglected.
This assumption is verified by study and simulation of the O0AOQ.
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5. The inertia is assumed to be spherical; in particular,
the torque coupling of rate and acceleration due to products of
inertia is assumed to be zero. Once again simulation and the fact
that Iij/Ijj < 0.01 bear out this assumption, where Iij are

elements of the inertia tensor.

Prior to discussing each block of the figure it is necessary to
define some coordinate systems. An inertial reference frame, fixed
in space, is defined as Xy, Yy, 2y, where Xy 1is the line of sight
to the target. A body frame, Xy, Yy, Zp, aligned with the control
axes, 1s related to the inertial frame by a conventional Euler trans-
formation described by ¢, &, ¥, the roll, pitch, and yaw Euler
angles. Each tracker has its own reference frame, XTR’ YTR’ ZTR’
which is fixed in the body and is related to the body frame by a
simple transformation. The tracker axis frame, Xy, Yy, Zp, 1is
then related to the tracker reference frame by the angles a, B, vy
(rotations about the tracker optical, inner gimbal, and outer
gimbal axes). Thus all axes of importance are related to a fixed
inertial frame. Each individual block of the system will now be
discussed. Appendix A presents a detailed description of the co-
ordinate systems and the blocks considered below.

First consider the block of trackers. The two basic models and
their relative merits are discussed at length in [11l]. The angle
model is derived from the fact that the line of sight to a star is
fixed in inertial space. The rate model is derived by equating the
vehicle rotational rate as expressed in the inertial frame and the
tracker frame, which is by definition also an inertial frame. Ba-
sically, the angle model for tracker 1 is described by

BB, = sin-'(cycBsBic+sychc? ccBict s8s7,c cBic) ~Bic (4-1)

~(sys¢ + cysfcplsBictlcyse - sysfce) cYc cBic + clcdsY ¢ cBic > e
A, = tan™! <—(s.pc¢ —cysfsg) sBic+lcycd + 5ys88g) CYic CBy¢c cs¢sYc B¢

where AB, Ay are gimbal angle errors and ¢, 6, ¥ must be de-
rived from p, q, r in an Euler integration block. [Note that
s(*) = sin(*), c(*) = cos(*), and t(*) = tan(*).] This block
solves three simultaneous nonlinear differential equations in ¢,
6, ¥ with inputs p, q, r and is independent of the number of
trackers in use.
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The rate model for tracker 1 is

ABl s(m/1 + vlc)q + c(AVl + ylc)r

(4=2)

Ayp =P - t(aB 4B, eyt v )a + edBy+By Js(ayy + v IF

Attitude control of the spacecraft necessitates a minimum of
two trackers. Thus this model at best requires solving four simul-
taneous differential equations in B, vi, Bj, Y i+ 3j=12,3,4,
with p, q, r as inputs. It also requires a system order of at
least one greater than the angle model. The rate model will also
cause a column of zeros in the matrix of the linear part of the
system state equation. This leads to difficulties because a criti-
cal matrix will not yield a positive definite solution P of the
Liapunov equation for any positive definite Q.

The next block in the figure represents the error processor.
The processor used here is the Doolin and Showman "partial proces-
sor," which is based on an attempt to produce an uncoupled error
signal using only resolvers and analog summers. This processor is
described by

. _ 4 - -
[ € 311 1 213 BBy
€q = dlzc(fyzc + sz) 0 dlzc('\(lC + Avl) Avl (4-3)
€y -dlzs(v2c + AWZ) 0 -dlzs(wlc + Avl{J AVZJ

The next block in the figure represents the compensator which
is a lead-lag. The transfer function is

V{ (Tl + TZ)S + 1
e—i = G (s) = K, Tys + 1 i=o90, 0,y (4-4)

which is modeled as shown in Fig. 4-2 in order to identify the
state variables Wy easily. The state equation is
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1
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€ K __Il_ + 1 “l |
a C T9 (7H
Ke = 2.685-10” Volt/Rad
T = 4.5 Sec
Ty = 0.5 Sec
Fig. 4-2

with output voltage

Vi = w; + Kc(l + Tl/Tz)ei i=9, 0

Compensator Model Identifying Compensator State Variable

(4-5)

(4-6)

The motor momentum wheel block comprises a saturation and

ideal inertia wheel.

Vi = £(V]) = 26 sat(V}/26)

Fig. 4-3 Motor Saturator Function
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The wheel can be configured as a torquer

A

Hwi(s) Kms

Ao Gu(s) = —<5 +1° i=190, 6,y (4-8)
i m :

or a momentum storage device

v, (8) K
i m .

TAG TR S are IR R T (49
i m

Assumptions (4) and (5), which uncouple the vehicle equations allow
them to be integrated so that the vehicle is described by a momen-
tum balance and the wheel momentum v; 1is the vehicle input. Thus,

the momentum configuration is used and described by the block dia-
gram of Fig. 4-4

mS

1 Rdb-Sec
Kn=13 Volt T~ 6.8 5€C

Fig. 4-4 Motor and Momentum Wheel

yielding
N . i= 0,6 (4-10
Vi_ T i T ]-_; 1= 2 ,?l' )
m m

The vehicle is simply represented by a balance between wheel
momentum Vj,

corresponding to vehicle momentum components Ip, Iq,

o .
or Ir, and Ihi the corresponding total momentum assumed to be
constant. '
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% )
p = I + h¢
Vo 0
q= - ?T + he . (4-11)
v
__ o
r = I + h¢

The final block (required only for the tracker angle model)
is the Euler block described by

S .
]

P+ qtdsét+ r th cod
0=qco-rss (4-12)
b= q 52 cd
v=4q co +tr cO °

Figure 4-5 presents the combined model in block form with the
angle model for star trackers 1 and 2.

The state equations below are a summary of the work above
using the angle model and assumptions 1-5.

o =('\';—¢+hg>+t93¢(-‘;—9-+hg>+t9cd>(-";—w+h;>
. K T
V¢=-Tl_mv¢+;if(w¢+Kc(l+?i>€¢)
(4-13)

- 1 K1
PoT T, % T T 2 %

2
o =c¢<'Te+hg>-s¢<-¥+h;)

22



¥4

‘¥

(34

b

I I“’—z l h' q'* \ Il.
[ R e
| | 3
v - "
2k R A kil 72 I IRV L Vi L WL I I a
I T2 T35 /] 2¢ ™$ I 1
4 | fe) l °
a) I . I
_—— — —— —COMPENSATION NETWORK — — -—— —— -—— ——MOTOR AND FLYWHEEL— —— — —— | —— -—— VEHCLE — —
Bic ric Bec ree
T Tae AT, . '“_l( (sysg + cysfc@ofyc+ (cysd - suslcg) cyy clpc + cOCP8 7y By
l J l arn : (spcd - cos¥sd)sByc +(cyce + sys@ag) crpc CByc — COMPIT By ) ~ T
¢ |-
Q ' ] OB\ 8B = sncyc@aBc+ spclcY,ccBic+ 3887 c cBc) - B¢ $2p ¢(1edlq + (theg)e
" 13
. LQ‘—w..-(cf)q-(lé)r
Y, - -
d)g¢(BY+ Yye) O dypc (AT, + Vi) i AY, = tan-! ( (sysp + cysfed)afict(cyed - spsfod) cric chic + cledelic chic ) - e v 3¢ $
-(sycd -cysdsg) sBc +{cypce + Sys@og) c¥c CHc - COSPIY ¢ Chc le—dq ¢« 7 t o'
|-4:280872 ¢ Tec) 0-¢, 3187, + Yie) A8y
ABy= sl (cyc@sBac- swclcTyccBc— s08Vyg CByc) - By
ERROR PROCESSOR

STAR TRACKERS 1 AND 2

Fig. 4-5 Typical Forward Channel a) Without Wheel Gyroscopic
Torques; and Feedback Path b) Based on Gimbal Angle
Equations



. o - =S 1 c
Pg = T, 0 2 %o
T2
v v

© _sb(_ 0, .0\ go/_ ¥ ;
Vo= co ( I + hQ) + cb ( I + hw) Egoii))

K

1

V¢ = T VW + f <;¢ - K 1 + ) )

KT

R __c1
T T, N T T2 Sy
2

where the relations for €4, €g, € AB1, AB9, Avi, and Ayy are
given in Fig. 4-5.

The state equation is obviously highly nonlinear and nine
dimensional with the form

x = F(x) . (4-14)

The analysis requires the state equation to be of the form
x' = Ax' + g(x')

g(x)) = 0 (4-15)

o)
I
o

To cast the equations in this form we define x’ as

x'=x - x (4-16)
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where x, 1is the equilibrium solution, i.e., F(xe) = 0, and

aFi(x')l

(4-17)
gx’) = F(x') - Ax’

The elements of A are complicated functions of the system
parameters and the equilibrium values of the attitude angle vari-
ables, ¢a, 6, V. These equilibria are given approximately as a

linear function of the hg where the coefficients are nonlinear
functions of the commanded gimbal angles.

The Ajj for o¢g = 6 = Y = 0 are far simpler in form than
the general case. Since ¢g, 6o, Y are quite small we believed
that it might not be necessary to use the general form. To cor-
roborate this, a program that calculates the eigenvalues of A
for zero and peak hi's over a range of command angles was written.
The computational results indicated that, at worst, differences in
the respective eigenvalues, both real and imaginary parts, occur
in the fifth significant figure.

The matrix A 1is required for the solution of the Liapunov
equation. In the course of solution it became evident that the
large differences in magnitude of various elements of A caused
numerical problems precluding an accurate solution. To combat
this, the state was reformulated in a nondimensional form (x”),
which yielded an A that permitted accurate solution of the
Liapunov equation. Appendix A presents a detailed description of
the model derivation.

The zero offset (¢ = 65 = o = 0) nondimensionalized state
equation is presented in Fig. 4-6. 1t is this form that illus-
trates the linear uncoupling achieved by using the Ames "paired
tracker" model. Tt should be noted that the complete state equa-
tions are not uncoupled. It is for this reason and because of the
failure of linear analysis that a nonlinear analysis was performed.
Simulation results, discussed below, substantiate the necessity of
the nonlinear approach.
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Three other models were also derived. Two of these, which
were derived in the hope of simplifying the analysis, are approxi-
mations of the basic model. The third is a simple variation that
tries to model a limiting of voltage in the compensator. Fig-
ures 4-8, 4-9, and 4-10, present the block diagram and state equa-
tions for each model. Blocks which are unchanged from the basic
model (Fig. 4-5) are simply named. The basic model will for sim-
plicity be labeled AN (all nonlinearities).

The first model studied ignores the compensator lag and thus
the state variables j, thereby reducing the dimensions of the
state from nine to six,(labeled 6I). The lag break, like that of
the tracker lag dynamics of assumption 2 , is basically beyond
the spacecraft dynamic region. The approximate compensator trans-
fer function becomes

G (s) ~ K (1,8 + 1) | (4-18)

with model (Fig. 4-7)

Fig. 4-7 Approximate Compensator Model

and equation

' _ * P -
V. =K (tqe; + ei) R i=29¢, 06,9 (4-19)

A six dimensional state greatly reduced the dimensions of the
space for J(Q) optimization, from 45 to 21. The benefits thus
derived are discussed in Section 5.
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The second model eliminates all nonlinearities except motor
saturation and is labeled MV. Thus it is in all respects but one
(the saturations) the same as the Doolin and Showman model of [2].
Moreover, it is identical in regard to channel uncoupling, which
is the essence of their model. The motor voltage saturation is
preserved because its small linear region seems to indicate that
it is the dominant nonlinearity.

Finally, there is a variation of the basic model which simply
places a saturator after (€4, €g, ew) to reduce the high voltage
input to the compensator; it is labeled ANL. This model causes
a large reduction in effective damping (rate lead) and closely
approximates performance with a DLU. This subject, however, is
not considered in the present stability analysis.

The simulation results are discussed in detail in Appendix B.
Given a tracker case and initial conditions for which the basic
model has an asymptotically stable equilibrium, there is a general
similarity of trajectories of the wvarious models. That is to say,
the dynamics are basically the same.

There exist, however, tracker cases for which the basic model,
the 6-D, and basic model with error limiting (which are identical
in the feedback path) are unstable, but for which the motor satura-
tion only model is stable. This phenomenon is discussed at length
in Appendix B. The important fact is that this definitely implies
that a model based upon linearizing the feedback path is not wvalid
for stability analysis. 1In fact it is coupling in nonlinear feed-
back, as opposed to its nonlinear form, that may cause grave dif-
ferences in performance between this approximation and the full
nonlinear model.
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5. COMPUTATION — PROGRAMS, PROBLEMS, RESULTS

Formidable computational problems are encountered in imple-
menting the techniques of Section 3. Initially, four individual
tasks were foreseen: 1) generate n X n positive definite sym-
metric matrices Q; 2) solve the Liapunov equation ATP+PA = - Q
for P; 3) search the state space for the minimum of V(x) on
V(x) = 0, x # 0; and 4) search the Q space for the QO that
maximizes J(Q). 1In the initial formulation, it was assumed that
the problem of searching the space of parameters generating Q
would be solved by the search technique of task 3.

Task 1, the generation of a positive definite Q matrix, was
achieved, as summarized in Appendix D, part (ii). Generation of
each 9 X 9 positive definite matrix Q requires specification
of 45 parameters which characterize the matrix, and 37 matrix mul-
tiplications to form Q.

Various algorithms for the achievement of task 2, the solu-
tion of the Liapunov equation (3-8), have been presented in the
literature. A comprehensive evaluation of four of these techniques
appears in [12]and in Appendix D, part (i) of this report. One
conclusion of [12] is that the method used here suffers least in
accuracy deterioration with dimension increase while it suffers
most with respect to increase of computing time with dimension.
Methods of solving the Liapunov equation are at present well un-=-
derstood so that task 2 was completed in an entirely satisfactory
manner.

The third task was by far the most challenging and required
the most effort. Development of the search technique proceeded
from first trying a gradient search, which is described in Appen-
dix D, part (iii), to finally developing the random search, which
is outlined in Appendix D, part (iv). Despite all claims made by
various workers who have investigated gradient search procedures,
all of our efforts in this area that utilized penalty functions of
various sorts were ineffective. The gradient procedure reliably
found the trivial global solution of (3-16) or it unreliably found
a local minimum, but further tests were required to see if it was
the desired solution of (3-9). It was the search for effective
tests that led to the development of the random search procedure.
Thus the conclusion was reached that penalty function techniques
and gradient type search procedures are totally inapplicable to
complex nonlinear, high order problems.
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The futility of using gradient techniques and penalty func-
tions became even more clearly apparent when we considered the
45 parameter search for the optimal Q matrix, QC. An analytical
gradient could not be derived because f was not explicitly-avail-~
able, and a numerical gradient would require 45 function evalua-
tions (one for each single perturbation of a parameter) to estimate
the gradient at omne point, and each evaluation would require one
search for 4. Thus, one could envision 45 X 20 = 900 minutes
of computer time for one gradient calculation for the Q° search.
[The gradient procedure was using 20 minutes of computing time to
converge to a minimum of (3-16), not necessarily the solution of
(3-9).] Those 45 function evaluations would be more productive if
we allowed for chance and good fortune, i.e., if we used a random
search procedure to select evaluation points rather than cluster-
ing them about some arbitrary starting point in order to calculate
a gradient. This reasoning led us to devote almost all of our re-
maining effort to the development of more efficient random search
procedures.

An efficient random search technique which takes advantage of
the geometry of the state space was developed and is discussed
fully in Appendix D, part (iv). This search procedure produces
results with a high level confidence, does not produce the trivial
solution, has no scaling problems, requires no gradient computa-
tions, and accomplishes a determination of { in 20 to 30 seconds,
depending on how the points fall, i.e., how many actual function
evaluations and one dimensional (bisection) searches are carried
out. This underscores the value of designing the technique to fit
the problem rather than forcing a problem to fit a technique.

This inner search, or search of the state space, has been re-
solved in an entirely satisfactory way, largely because informa-
tion is available in the way of geometrical structure in dealing
with a collection of nested ellipsoids: The search as finally re-
fined is fast, dependable, and accurate.

The outer search, or search of the 45 dimensional parameter
space, which is detailed in Appendix D, part (v), has not been de-
veloped to a completely satisfactory point, not only because of
the high dimension of the parameter space, but also because almost
nothing is known about the geometry of this space, that is, the
general nature of the functional dependence of the volume J(Q)
on the parameters which generate Q, and because of the primitive
state of the art in global search techniques.
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This algorithm is the first known instance of one random
search imbedded in another. The extremely efficient "inner search"
(Fig. 5-1) takes between 20 and 30 seconds on the IBM 360-75 to
search the nine dimensional OAO control system phase space for a
bound on the volume estimate provided by a specific positive defi-
nite matrix Q. The 30-second time is valid if 5000 points are
examined whereas the lesser times are due to an "abort" feature.
This feature holds the last best inverse volume estimate (vol-1%)
and compares it with the vol~™l as calculated at each randomly
selected point. If vol~l is greater than vol~1* the search is
aborted since we are now looking at smaller volume estimates than
our last best. Since each Q 1is generated by 45 independent
variables (for the 0AO) in the "outer search" (Fig. 5-1), runs of
one hour or more on the Grumman IBM 360-75 and the IBM 360-95 at
the Institute for Space Studies in New York City were required to
obtain estimates of the domain of attraction which represented
maximal quadratic estimates with some degree of confidence.

The need for research into effective search techniques is a
definite future requirement as is evidenced by the effort put
forth in this study. It looks as if general procedures to ac-
complish this will not suffice and the search technique will be a
function of the problem itself or of a general class of problems.

The computer program was developed primarily in FORTRAN IV
while some subroutines are in machine language. The machines
utilized were the IBM 360 series, models 75 and 95. The entire
program consists of approximately 1800 cards. The input consists
of between 6 and 16 cards depending on the program option selected,
while the printed output consists of the inverse volume (a carry-
over from initially using gradient minimization routines) of the
optimal estimate of the domain of attraction. There is interim
output such as the matrix Q and its parameters, the matrix P,
the performance index P, the value of the Liapunov function V,
and its time derivative V at the point where [/ is defined
whenever there is an improvement in performance P.

The details of the computer programs are included in Appen-
dix G. A special form of these programs is included in Appendix F
where the Liapunov equation is not solved for P from a positive
definite Q but instead a positive definite P 1is chosen that
does not necessarily imply that Q will be positive definite.
This program just checks Q for positive definiteness before pro-
ceeding. As many as 2400 trial choices of positive definite
P-matrices have been made consecutively without a positive defi-
nite Q occurring.
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The experimental results of the program based on selecting
the Q matrix are presented for two systems. The first is the
nine dimensional complete system, while the second is a six dimen-
sional version of the first with the compensator lag dynamics
eliminated because of their much higher rate of response. There
is nevertheless a basis of comparison of the two systems in their
respective angles and associated momenta.

The over-all result of the computation was that the estimates
were well into the nonlinear region of the system. That is, the
angular error which causes motor saturation is approximately twenty
arc seconds, whereas our results indicated that we were closer to
ten minutes of arc in our estimates of the angular state limits of
the domain of attraction. While the ten arc minutes looks good
with respect to the motor saturation error signal, we observed con-
sistent stable behavior of the system during simulation runs from
fifteen degrees of attitude error for many choices of initial star
tracker command gimbal angles and initial angular momenta of the
system.

We were fortunately able to use the IBM 360/95 at the NASA
Goddard Institute for Space Studies (ISS). This computer is much
faster (approximately ten times) than the IBM 360/75 which we had
been using at Grumman and has a core 10 times larger. This enabled
us to use a 300,000 point inner loop state space search, rather
than the 5000 point search being used, in order to attain confi-
dence in the validity of the random search technique results. The
results of the 9 dimensional search as run at the ISS are shown in
Table 5-1. These results are only a small portion of the total
results of computer runs at both Grumman and ISS. The best inverse
volume in which there was some degree of confidence was 0.488x 1035
at run #6, which corresponds to physical variable limits (after
maximal eigenvector projections on unscaled state coordinates as
shown in Appendix E)of: |¢| = 2.48 min., |vy| = 0.181 ft-1b-sec,
lwy| = 1980 volts, |0] = 5.91 min., |vp| = 0.342 ft-lb-sec,
lwg| = 941 volts, |y| = 8.98 min., |vyl = 0.452 fe-1b-sec,

1410 volts. It should be noted that the angle intercepts

[y |

[¢T, le]l, and |¢| were diminished by factors of approximately
three from those obtained with previous 5000-point searches, due

to the more conservative influence of the larger number of points
used in the inner-loop search. These results were obtained with a
quasi-diagonal Q matrix, zero initial momenta (Ih8==1h8==1h2==0),
sin(v1, = Y2.) = 0.1, Biec = 0 (quasi-diagonal A), and

Boo = ° m/6 radians (run #6, Table 5-1).
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Table 5-1

TABULATED RESULTS OF Q-MATRIX SEARCH PROGRAM AT THE INSTITUTE FOR SPACE STUDIES

*

- *

Run # . Trials Time vol 1 P Comments

e M) -

" ]

1 ~ 150 3 .606 x 10°3 1.1217  5000-pt. search, quasi-diagonal
Q (gq=d=Q); job aborted - excessive
output

* :

2 ~ 2500 62 (not printed out) 1.1480 5000-pt. search, q-d-Q, reduced
output run

*

3 1019 105 .599 x 1035 1.1592 300,000-pt. search from the best
point of run 2, q-d-Q (all runs
from here on are 300,000 pts)

*

4 1000 14 .497 x 1037 1.1566 Started from the best point of
run 3, full-Q

*

5 2000 16 .892 x 1035 1.1650 Continuation of run 4 in random

# gen., full-Q
*

6 2473 72 488 x 1035 1.1563 q-d-Q from best point in run 3
(really an extension of 3)

ok

7 1022 118 .187 x 1042 1.3757 q-d-Q, start from Ki =1,
6, = ¢, =0

j k
*k 41 . .

8 1872 136 .202 x 10 1.3435 Start from the best point in
run 3, q-d-Q

9™ 29 38 .134 x 10%° 1.6042 Start from the best point in
run 3, q-d-Q

ok
10 453 61 .105 x 10°° 1.6340 Same as run 9 except full-Q
Fekdek +
11 1000 2 abort condition 1.6666 q-d-Q, started from the best
51 point in run 3
10
*dkkdk +
12 1000 3 abort condition 1.6666 q-d-Q, started from the best
51 point in run 3
10
Total Trials 14518
*
h; = 0, vy, = =v,, = -05017822 rad, B, =0, B, = -1/6
Kk
hi =0, Yie ™ "V2¢ T m/4, Blc =0, B2c = /6
Fodok
hi =0, Yie = Y2 T /4, Blc = - B2c = /6
*kkk
i = 1/1500 (half wheel speed)+,-,+, v;, = - v, = .05017822, B, =0, B, = -r/6
Fekededek
hi = 0.2/1500 (1/10 wheel speed)+,+,+, Yie = 7 Yoo = .050178, Bic = 0, Boe = -1/6
+ . . . -12 - . 51 *
if the best Liapunov function is < 10 , the vol is set = 10 and P

thus becomes

~ 5/3
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The inclusion of a full Q-matrix, addition of nonzero ini-
tial momenta, the inclusion of £7., # 0, and increasing the
sin(yje = Y2e) to values > 0.1 cause degradation of the vol~
as illustrated in Table 5-1. Results indicate high sensitivity to
variations in Yies Y2e¢» Blc’ and initial momenta. The case of
B1c = 0 gives a quasi-diagonal A matrix, thereby decoupling the
system, at least in the linear part. The nonlinear part is still
coupled through the roll, pitch, and yaw channels. The most
severe degradation of the system occurred when initial momenta
were introduced to even one-tenth of wheel capacity.

A 6 dimensional approximation of the 9 dimensional problem
was also programmed but with a 100,000 random point inner loop
search. The best results were obtained for the case By, =0,
Boc = - 7/6 rad, sin(Yic - vz¢) = 0.1, h§ = h§ = hy = 0, giving
a vol-l estimate = 0.562 x 1025, with projected maximum values
(not occurring simultaneously) of the physical variables as fol-
lows: |¢| = 0.14 min., |6] = 10.4 min., |¥| = 8.30 min.,
lve! = 0.050 1b-ft-sec, |vg| = 0.48 lb-ft-sec, |vy| = 0.39 1b-ft-sec
(see Table 5-2).

A comparison of the 6 and 9 dimensional results show that
both programs exhibited their best results for the case of 1) quasi-
diagonal Q-matrix, 2) zero initial momenta (Ih$==Ih8==Ih$ = 0),
3) sin(y{, = v2e) = 0.1, 4) By, =0, and 5) By, = - 7/6 rad.
The 6 dimensional results provided a better |6] intercept esti-
mate of 10.4 min., than the 9 dimensional estimate of 5.91 min.;
however, the 9 dimensional program provided surprisingly better
|¢] and |¥| estimates (2.48 min. compared to O0.14 min. for
lo|, and 8.98 min. compared to 8.30 min. for [v]|). Perhaps
the failure of the 6 dimensional program to provide clearly
superior estimates in spite of the smaller dimension of its Q
parameter search and greater relative number of trials is due to
the fact that the effect of a 100,000 point search per trial in
6 dimensions is approximately equivalent to a 32 million point
search in 9 dimensions; 32 million would be very conservative com-
pared with the 300,000 point search actually used in the 9 dimen-
sional case.

The dollar cost of obtaining an estimate of the domain of at-
traction is of interest for comparison with simulation. Only
nominal values of the cost per computer usage hour are used since
these costs fluctuate as a function of total usage hours, time of
day, order of priority, etc. The cost of obtaining an estimate of
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Table 5-2

SUMMARY OF RUNS AT ISS FOR 6 DIMENSIONAL MODEL

Run # { Trials | Time vol-1 P* Comments
. (Min)
* 25
1 ~ 8000 120 .562 x 10 1.237 100,000 point search,
* - .
P = log(vol) 1/20
dedok 30
2 ~ 3000 60 .261 x 10 1.471 " "
*k
3 4200 60 | .225 x 10%7 | 1.318 " "
ddokk -1
4 4000 60 ——— ——- vol too small to com-
pute without rescaling
problem
*

o . - - - - -
h® = 0, v; = =v,, = .05017822 rad, B, =0, B, = -v/6 rad

*%kk o
b =0, vy, = -7y, = -05017822 rad, B, = v/6, B, = -m/6 rad

ik
’ 'ch - -'YZC - 1"/4, Blc - 0, 62c - '0/6 rad

ho = 0

dehekk o
BO = 1/1500 (+,-,4), 7, = =¥
52c = -7/6 rad

2 - .05017822 rad, Blc = 0,

the domain of attraction is found for a given set of initial mo-
menta (hg = 0) and a particular set of commanded gimbal angles
(Y1c = = Yo = 0.05017822 rad, By, =0 and By, = - 7/6). These
data are presented as runs #l through #6 in Table 5-1. The best
estimate (run #6) is used as the example, (it must be noted that
run #6 is a continuation of run #3 which in turn is a continuation
of run #2). Therefore the cost should be the dollar value asso-
ciated with the sum total of computer hours used, which is approxi-
mately four. Since the IBM 360/95 nominally costs $1000/computer
usage hour, the cost is approximately $4000/estimate. Since we do
not want it to appear that any issues are being clouded by the
particular parameter set mentioned, and since this is possibly not
the usual computer, we adjust our estimate by a factor of ten to
the conservative side, as a result of which our cost is brought up
to $40,000/estimate/parameter set. Let us get some "feel" for the
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number of points in the state space that have been examined during
these four hours of computer time. With the special abort feature
of the program, which reinitializes the state space search whenever
the volume of the estimate corresponding to Liapunov function V
becomes smaller than the previous last best volume estimate, a
300,000 point state space search takes approximately five minutes.
If we say that for only half the time we are examining 300,000
point/5 minutes and the other time we are doing nothing, then we
are evaluating 72 x 1035 points in this over-all search. Hence

our estimate is approximately 0.5¢/point/parameter set.

Since stability analysis by simulation is the major means of
doing the same job that this algorithm is doing, a comparison might
be undertaken to get a dollar estimate of the cost of doing such
an analysis with a satisfactory degree of confidence in the results.
Since we have a nine dimensional state space, choosing all combina-
tions of the maximum value, minimum value, and zero for each of the
state variables would yield a hypercube grid of 39 - 1 (excluding
the origin) state points (initial conditions from which trajecto-
ries should be run). Again, this is for a single set of momenta
and commanded gimbal angle parameters. On the average, a trajec-
tory in state space takes approximately three to five minutes of
IBM 360/75 machine time. If we estimate the IBM 360/75 machine
time cost to be $500/computer usage hour, the cost to run this
simulation from which stability of the system is to be ascertained
and in which we think one might place a high degree of confidence
is $500,000, which is $25/point/parameter set. In these estimates
we have taken 39 - 1 to be 20,000, we have assumed the three
minute/run figure, and we have ignored the cost of plotting and
"eye balling" the runs.

While it is admittedly true that performance information re-
sults from simulation, the problem at hand is stability analysis
of the system and not the accumulation of other valid but superflu-
ous data.

As an example of the time and dollar constraints that are
placed on a project and how they manifest themselves in what we
believe to be a reduction in confidence in the results in terms of
stability analysis, consider the following. For the actual O0AO,
the total number of simulation runs with variation in all parame-
ters was 20,000. Recall that 20,000 was what we believed would be
a reasonable number of runs for a single parameter set. Hence the
degree of confidence in the results must be considered small.
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A conclusion from this experimental work is that the algorithm
is a feasible method for conducting the stability analysis of a
high order system. It is cost effective compared to simulation,
but it is probably too conservative in its estimates although it
did give results well into the nonlinear region of operation of
the system. Finally, it is clear to us that more efficient search
techniques are a requirement for any future work in this area since
this was actually the biggest restraint on our over-all progress
during this study
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6. CONCLUSIONS

The algorithm developed and examined in this study is a fea-
sible solution to the problem of estimating the domain of attrac-
tion of an equilibrium state of a complex nonlinear physical
system. Its further development into a practical tool is limited,
however, in two ways. '

First, there is the problem of determining the subset of sys-
tems within the set of quasilinear asymptotically stable systems
for which a quadratic or ellipsoidal estimate of the domain of
attraction is adequate. Since the nonlinearities are not accounted
for in the geometric shape of the estimate it is conceivable that
there are systems for which one cannot find a suitably large family
of ellipsoids within the domain of attraction such that all trajec-
tories cut them in the inward direction as required by the problem
formulation. The use of Luré-Liapunov functions may be more suit-
able in these cases, but the computational problems become more
difficult.

Second, the state of the art in search techniques must be sub-
stantially advanced so that the maximization problem can be effec-
tively and efficiently solved. For a system of dimension n the
maximization problem is of dimension n(m + 1)/2. Thus, for prob-
lems of reasonable complexity gradient techniques must be abandoned
in favor of random search techniques because more information can
be gathered, in a global sense, by the same effort required to de-
termine a local piece of information (the gradient). The problem
is further complicated because the objective function is stated in
terms of the solution of a minimum problem which is dependent upon
the variables over which the maximization occurs. Thus the prob-
lem is one of high dimension and unknown, complex geometry.

Despite these hurdles, the continued development of the algo-
rithm remains attractive because it promises to provide a tool
that can provide higher confidence stability information for com-
plex nonlinear systems than can simulation (the only other simi-
larly general tool) at lower cost. This conclusion is based on a
very conservative comparison, i.e., all efforts were made to favor
simulation. For a given confidence level the cost of obtaining
the result by simulation is two orders of magnitude more expensive
than the cost of utilizing the algorithm.

In the process of developing the algorithm, the inapplicability
of gradient searches and penalty function techniques to the minimum

42



problem became painfully clear. They are inapplicable for three
reasons: 1) the solution sought is the local minimum nearest in
value to the global minimum (a trivial solution); 2) the surface
being searched has many minima; and 3) the relative ranges of the
function to be minimized and the penalty function are not known

a priori. The global minimum acts as a grand attractor and any
attempt to "mask it from view" introduces a new unknown local mini-
mum or requires total knowledge of the surface around the origin.
The many local minima repeatedly trap a gradient search and the
result must be certified by other means. The lack of knowledge
about the relative ranges of the two functions makes the choice of
penalty constant almost impossible without excessive additional
computation equivalent to random searching. This factor and the
need for another means of certification led to creation of a very
effective random search technique that utilized the known geometry.
The resulting conclusion 1s that for complex problems, random
search is more attractive and effective than gradient search, and,
if at all possible, known geometric facts should be used in struc-
turing the search.

In the process of developing the system model it was shown
that the choice of star tracker model directly affects the com-
plexity of the stability analysis. Further, linearization of the
star tracker-error processor combination introduces substantial
errors in both magnitude and sign of the approximate error signals.
This is apprently the reason why the Popov approximation (linear
part plus saturation) fails to represent the stability properties
of the system. (It indicates stability when the system is un-
stable.) The lesson learned is that one must be careful in model-
ing a complex nonlinear system and must resist the temptation of
settling for an analytically attractive approximate 'model until it
has been proved adequate to the task. It is not at all clear that
the adequacy can be proved without analyzing both the complete
model and the approximation, thus negating the value of the approxi-
mation.

The Popov approximation was studied in connection with the
use of Luré-Liapunov functions to obtain an improved estimate of
the domain of attraction. It was found that the frequency domain
techniques are not sufficiently well developed to permit the com-
plete stability analysis of the approximate model. Only the spe-
cial case in which the three channels are uncoupled could be car-
ried out. It also became apparent that computational aids are re-
quired to establish the positivity properties for the modified
system functions when the system is nonacademic, i.e., as complex
as the one studied here.
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In the formulation of the Popov model more respect was gained
for the prosaic but ubiquitous block diagram. Formulation of the
model from the block diagram is easy compared to the laborious
task of formulating it from the state equations. The lesson here
is not to follow the deceptively simple prescription of matrix
manipulations until the engineer's intuition has first been exer-
cised. It has a place even in the world of high order nonlinear
state equatiomns.
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APPENDIX A

DERIVATION OF THE SYSTEM MODEL AND APPROXIMATIONS

The OAO is a cylindrical structure of octagonal cross section
designed to accommodate a wide variety of astronomical experiment
packages. This attitude control system has four modes of opera-
tion: initial stabilization, acquisition of the sun line and then
roll search to acquire the guide stars; open loop slew to a com-
manded attitude; coarse pointing control; and fine pointing con-
trol. This appendix is concerned with the coarse pointing mode,
which utilizes a high gain nonlinear system capable of reducing
initial attitude errors of 8° to a range of 2 to 5 minutes
of arc such that the fine pointing system can hold the required
attitude to =15 seconds of arc for up to 50 minutes. (See
[13, 14] for details.) High system gain and nonlinearities com-
bine to make the determination of coarse pointing stability very
difficult.

Further, instability of the coarse pointing mode can destroy
success of the mission. Since observations and corrections can
only be made at three closely spaced ground stations, an insta-
bility can go unobserved for almost an hour. A tumbling insta-
bility will cause the control system activity to deplete the stored
electrical energy. It will also prevent the solar cell arrays
from recharging the batteries and cause the trackers to hit the
gimbal stops thus losing the references and attitude information.
The remainder of this presentation is devoted to developing the
system model for the difficult and important problem of determin-
ing the stability of the coarse pointing mode. The system block
diagram of the coarse pointing mode is shown in Fig. A-l with the
signals at each block of the three channel system explicitly iden-
tified as a three vector.

The primary sources of mechanical energy in the coarse point-
ing mode are electrically driven momentum wheels. The primary
sensors in the coarse pointing attitude control system are a set
of gimbaled star trackers that track selected celestial references
(guide stars) and read out gimbal angle errors. These errors are
the differences between the gimbal angles when the vehicle is on
target (commanded gimbal angles) and the actual gimbal angles re-
quired to maintain the guide star in the center of the star track-
er's field of view.
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The actual OAO has six gimbaled star trackers and uses from
two to six star trackers at a time; however, the "paired-tracker"
system devised by Doolin and Showman {1, 2] has only the four star
trackers mounted on the sides of the vehicle and uses a pair at a
time. The simplification in error processing and system design/
analysis of the "paired-tracker" system is achieved by aligning
the outer gimbal axes of all four trackers with the vehicle opti-
cal or roll axis. This is the system that will be modeled here.

Qur attention in this appendix is directed toward the deriva-
tion of the system model. It will be demonstrated that the choice
of the model has a direct material effect on the degree of diffi-
culty of the stability analysis. The basic block diagram of the
system is given in Fig. A-1 and the model will be developed in
signal flow sequence beginning with the star trackers.

AR X

Ve
Vy Jets, Yy
Compensation Mo(’;ors, | Vehicle
Networks Voltages | &N Wheel Dynamics
Momentum Momenta Body Rates
Wheels or
<e¢> (2}%) Euler Angles
€ AY
6 2 Star
€y Error AB9
rackers
Error Processor [° Gimbal Angle Tl & 2
Signals Errors
Trackers 1& 2
Commanded
Gimbal Angles

Yic Blc Y 2c B2

Fig. A-1 Basic System Block Diagram
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To define the star tracker model we begin by establishing the
coordinate system of Fig. A-2. The coordinate system subscript r
(reference) is assumed to be inertially fixed with the X, coordi-

nate axis being the line of sight to the target star, and the

Y., Z,. axes are in a plane perpendicular to the line of sight to
the target star such that the angles ¢, 6, ¥ are zero when the
vehicle is on target. The coordinate system subscript b (body)
is aligned with the principal inertia axis (control axes) of the

vehicle, with the Xp axis being the vehicle optical axis. The
Euler angles ¢, 9, ¥ are, respectively, the roll, pitch, and yaw
angles with respect to the reference coordinates. (The convention
here is that vectors denoting coordinate frames are upper case,
components of a vector lower case.) Thus the relationship of the
reference and body coordinates is given by the set of rotation
transformations Ry, Ry, Rw, viz.,

xr Xb
Yo | = RRGR,| Yy (A-1)
Zr Zb
where
[ 1 0 0 ]
Rq> = 0 co -s¢
0 so cd |
[ co 0 SO
Re = 0 1 0 (A-2)
| -50 0 co J
cy -sY 0
Rw = sy cY 0
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Y - OUTER GIMBAL ANGLE

Fig. A-2 Definition of Coordinate Systems
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For each star tracker we construct a coordinate system sub-
script TR (tracker reference) in which Zpgp 1is aligned with the

tracker outer gimbal axis, Yypp 1is aligned with the nominal inner
gimbal axis, and Xpp 1is aligned with the nominal tracker tele-
scope axis. The coordinate Xg 1is the actual tracker optical

axis, and the angles v, B are the outer and inner gimbal angles.
The angle a 1is the rotation about the tracker optical axis.

Thus the relationship between the tracker and the tracker reference
coordinates is given by the rotation transformations Ry, Ra, RW’

viz.,

1 - 1
XT xTR
YT = RURBRW YTR (A-3)
2T | ZrR
where
1 0 0
ROL = 0 ca sa
0 -sa ca
cB 0 -sf
RB = 0 1 0 (A-4)
| sB 0 cp
[ cv sy 0
Ry = ~-sY cy 0
| O 0 1

The relationship of a given tracker (no. n) reference co-
ordinate system to the vehicle coordinate system is given by the
linear transformation Tn’ i.e.,

49



b TR
=T _
Y, n | Yo (A-5)
Zp | | ZTR
where
0 0 1 ]
~Tl = 1 0 0
0 1 0
0 0 1
T2 = |-1 0 0
0 -1 0 d
(A-6)
0 0 1
T3 = 0 -1 0
1 0 0
0 0 1
T4 = 0 1 0
-1 0 o

The star tracker model will now be derived by assuming perfect
tracking and infinite distance from the stars. In this case, with
¢ =6 =19 =0, the commanded gimbal angles give the coordinates
of the unit vector along the line of sight to the guide star in
the reference coordinates, i.e.,
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X 1]
r
~ T T T
Y, | = TR Ry R, | O (A-7)
r n ’Yc c Gc
z | 0
L r . L

where superscript T denotes transpose. However, if the body
undergoes a rotation of ¢, 6, ¥ then the actual gimbal angles
describe the line of sight in body coordinates, i.e.,

- '\Jx‘b - rl-‘
~ | T )
¥, | = T,RRSR |0 (A-8)
Zy | 0]

and its description in reference coordinates is

[ X [1
n _ T T T _
Y, | = RRR,T R RR 0 (A-9)
z 0

L r | L

Since the line of sight to the star is fixed in inertial coordi-
nates we have

1 1
T T T _ T_T,T -
TnRYcRﬁcRac 0| =RRRTRRR, |0 (A-10)
0 0

From this set of three equations we obtain two equations relating
the actual and commanded values of B and v. The error AB, Ay
is defined to be the difference between corresponding actual and
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commanded values. In the notation of Doolin and Showman [1, 2],
the angles B and v are defined to be the negatives of those
defined here. With this taken into account, the equations de-
fining AB, Ay for the four trackers are given in Fig. A-3b.

The tracker model can also be derived by noting that the ro-

tational rate of the body with respect to inertial space in body
coordinates is given by

Q=149 (A-11)

where p, q, r are the rotational rates about the body axes X,
Yy, Z2p. Thus the rotational rate in reference coordinates is

given by
Qr = R R9R¢Qb (A-12)

However, the tracker coordinate system is also inertially fixed
and the rotational rate of the body in that system is given by

a cBey - B sy cBey =-sy O a a
Qp = B cy+a cBsy | =- | cBsy cy O Bl = - L g
y-a sp l-s8 0 1| ]|y ¥

(A-13)

in the tracker reference system. In the reference system this is
given by

Q. = RRRT O (A-14)

and thus

RRoR,Op = R RRGT O (A-15)
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AB) = s{AY ict 7ic) g +c(AY i+ Yic)

Ay,

p-t(AB, + B¢ c(AY e+ 7ic) a + t(AB) + Bie)- sS(AY it 7ie)r

ABp =-s(AYp + Yac) - q - c(AY2 + Y0)'r

AY, = p+ 1(ABz + Bag)rc(AYa+ 7ac) a—-1(ABy + Byc) s(AYp + 7ag)

AB3y = ~clAYs+ Y3c) q+ s(Arz+ Vac)'r

A.73 p-f_(ABz,+ ﬁ3c)'5(A73 + 730)' q- '(ABS + Bsc) 'C(A73+ 733)"

Aﬁ4=C(A74+ 740)'Q'S(A74"‘74c)'r
A-Yq, = p+f(AB4 + B4c)‘ S(AYq + 7’40)‘q+ t (AB4 + B4C)'C(A74 + 74c)'|’
a) GIMBAL ANGLE RATE EQUATIONS

AB,=sin"'(cycOsBc+ sychcY ccBic+ $8s7c cBic) - Bic
A7, = tan~! < “(sys¢ +cysbcd)sBic+(cysd - sysbcg) c¥c cBic + ccdsyic cBic

: an -(sycp —cysOsd) sBic+{cyce + syshsd) c¥c CByc — €8S$SY ¢ CBc ) = Yie
ABo=sin"(cychsBac — sy cB cYacCBac — 58 8¥e B -Bac
AY, - - ( (sysd + cysBcd) sBoc+ (cysé - sysBcg) cypc CBac + COCPSYpe CBac

2 = fan (sycp - cysBSg)sByc +(cycd + syshsg) c¥pc CByc — COSPSYpc CBac > ~Yac

AB3 = sin"'(cycBsBsc + sYCh sYsc cBac — S8 ¥ cBsg) —Bac

—(sycg — cysOsP)sByct (cyco + sYys8S¢) STsc CBxc + COSPCY3c CBac
AY3 tan ™! ) - 736

(sys¢ + cys@ce)sBsc - (cysp — sys@ce) SYac €Bac + COCHCY3c CBac

AB4= S|n_I(C\PCGSB4c - 54«08 sYac CB4C + s8 erccﬁ4c) —B4c

+(syce - cysé SP) sBac +(cycCh + sysOsd) SYyc CByc + COSPCY ¢ CByc )
~(sys¢p + cysOc sBac— (C¥Sh —sYsSOCe) STyc CBac + COCHCYac SBac 4c

b) GIMBAL ANGLE EQUATIONS
Fig. A-3 Two Possible Star Tracker Models

A7, = tan™! (
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or

P Q
q == TnTB,Y B . (A_16)
r Y

With the Doolin and Showman convention taken into account, the re-~
lations for each tracker are given in Fig. A-3a. Note that o is
unmeasurable and thus of no concern here.

Thus, there are two readily derived models for the star
trackers — a model based on rate equations and a model based on
angle equations. A very tedious exercise in algebra and calculus
proves that the former is the derivative of the latter — as it
must be. Their influence on the stability analysis will be demon-~
strated later.

The control system design described in [1] and [2] is given
for both a "constant processor" and a "partial processor." These
processors differ in the degree to which they approximate the
relationship between the tracker gimbal angle errors and the body
angle errors. The "partial processor" requires resolvers mounted
on the outer gimbal shaft and is the one to be used in this model.
For the particular case of trackers 1 and 2 the "partial processor"
is given by

€5 | ajy 1 ajg 1 [4B1]
€g | = d12 c(vzc-Fsz) 0 d12 c(vlci-Avl) Avl (A-17)
v | dyp 8(vp FAY)) 0 =dy, s(v FAvy) | |28,

where €4, €g, €y are the error signals in the ¢, 6, ¥ channels,

respectively. Each of these signals is then passed through a
lead-lag compensation network with transfer function G_.(s) where
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(Tl + T2)S + 1

Gc(s) = Kc .8 + 1

2
K, = 2.685 + 10° volt/rad (A-18)
Ty = 4.5 sec, . Ty = 0.5 sec

as given in [2]. The corresponding differential equation is

T,V + V' = Kc(Tl + T2)€ + K e (A-19)

where (°) denotes differentiation with respect to time and V'’
is the output voltage. By defining

‘1
Vi=o+ K (1L+ e , (A-20)
c T,
Eq. (A-19) becomes
T
<.L)+—'1<D=-K——le (A-21)
T c 2
2 Ty

and the set of equations, in state variable form, that describe
the compensation networks are:

. 1 I |
o + Ty w¢ - Kc 2 €¢
T2
T
, _;)
V¢ = w¢ + KC (1 -+ Tz e¢
B |
Wg T W = K, 3 &
2 12
(A-22)
"1
r _ —
VG = @y + K (1 + T2>€9
S |
ww + Tz ww = Kc 2 ew
i)



As per [2] the motors and momentum wheels are represented by
the motor saturation

V' o= £(V') (A-23)
where V', in volts, is

26 s v/ > 26 volts
vV = £f() =< Vv , V'] 26 volts (A-24)

-26 , v/ < -26 volts

and the transfer function from V’ to wheel torque H, is

Kms
Gm(s) T T s+ 1
(A-25)
1 ft-lb-sec _
K =13 wolt  ° T 76 .8 sec
Since the wheel momentum is given by
v = HW (A-26)
the transfer function from V' to wheel momentum v 1is
Km
4 - e— -
Gm(s)—'cs+l' (A-27)
m
The corresponding differential equation is
T v+ v= KmV” . (A-28)
The equations describing the vehicle are:
Ip = - qu) + (rve - qvw)
Iqg = - HW + (pv¢ - rv,
6 (A-29)
Ir = - HW + (qu) - pve)
14
I = 1500 slug-ft>
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where I 1is the rotational inertia of the vehicle (assumed to be
balanced). Thus the equations describing the motors, momentum
wheels, and vehicle in state variable form are:

+LV =.I.(Ev”
Vo T x_ Ve T 1 Ve
m m
K
- 1 _ _m " 1 -
P=+T7V "7 1V tTOV - av)
m m
Km
Vg + ;; Vg = ;; V6
(A-30)
K
T m_ e 1 -
Q=+ 77V "7 1 Vet 1PV, - TY,
m m
K
° ]. m ..~
v, +— v, =—YV
14 To (4 To (4
K
W _m oy 1 -
r =+ TmI vw TmI Vw + I(qv¢ pve)

If the gyroscopic torques due to the momentum wheels are neglected
(this appears reasonable on the basis of simulation data) then the
vehicle equations reduce to

Ip=-HW¢=-V¢
Iq = - HW == v, (A-31)
e
Ir=-H =-v
W¢ '/
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or to

Ip =

Iqg =

Ir

where p(0) 1is the initial value of p.

- v, t (Ip(O) + v¢(0))

- vy + (1q(0) + v9(0)>

0

- Vv

Y

+(1r (0 + v, (@)

tions clearly demonstrate the momentum exchange process.
these simplified equations, we reduce the state equations for the
momentum wheels and vehicle to:

Finally the equations for the Euler angles ¢, &, ¥ are:

S .
]

@ .
|

]
]
=

1
I

Km "
T V%

m

Ve + (p(O) + % v¢(0)>
Km
T VY

m

v, + (q(O) + % vQ(O))
K
_m v//

T

m

1
V¢ + (r(O) + I v¢(0)> .

p + (tfs¢o)q + (tbecd)r

(c9)q - (s9)r
so _ . co
ch+c9r
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These simplified equa-
Using

(A-33)

(A-34)



All the equations presented so far are summarized in block
diagram form in Fig. A-4 for the sensing and processing devices
and in Fig. A-5 for the compensators, actuators, and vehicle. It
is clear from Fig. A-4 that for a pair of trackers the tracker
rate model contributes four dynamic equations while the angle
model contributes only the three Euler equations regardless of the
number of trackers. Thus, there is a saving of at least one state
variable by using the angle model. Figure A-5 clearly shows that
the dynamic dimension of the simplified forward loop model is six
whereas the more complicated model is of dimension nine. Thus, by
restricting ourselves to the tracker angle model the system dimen-
sion is nine for the simplified vehicle model and twelve for the
one accounting for gyroscopic torques due to the wheels. Also
notice that the simplified model forward loop has a constant input,
the initial total angular momentum, and thus is essentially a regu-
lator system.

In order to perform the stability analysis that is planned,
the system state equations must take the form

x = Ax + g(x) (A-35)
where x 1is the state vector of appropriate dimension, A 1is the

matrix of the linear part, and g(x) 1is the collection of non-
linear terms which have no linear part, i.e.,

lg &)l

lim —t—p— = 0 ' (A-36)
Il - 0 1!
where | || is the Euclidean norm and in particular g(0) = 0.

The development here will be restricted to the simplified model
(no wheel gyroscopic torques).

We begin by defining a set of variables whose value at equi-
librium (& = 0) will be zero, viz.,

6" =0 - o

e
,— - -
0’ =0 -6, (A-37)
vio= 9 -
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where

6

bas

and es Yo

il

o - Ih
, - Ih
, - Ih
o~ (-
o~ (-
b~ (-
p(0) +
q(0) +
r(0) +

(A-37)
(Cont.)

H =

v, (0)

(A-38)

P~ =

v, (0)

vw(O)

Ll

are the offset angles which are complicated func-

tions of the initial angular momentum Ihg, Iho, Ihz and the com-

manded gimbal angles,
equilibrium errors:

i.e., they are the values that produce the

(A-39)



Thus, the equations in the case of the tracker angle model become:

_ .1, _f(ose) ., _ (tbeo) ,
=T 1V 1 Ve I Vy

K T
e _ L o, m A’ ¢ 4,0y _ I .0
Vo =TT Vot 3 f(Kc(1+T)€¢+w¢+Kh¢> _
m m 2 m m

cr _ _ 1L _mI A ) ’ I ;o0 _ I .o _
v! = v! + f(Kc(1+ )e +w+Khw) Tmhw (A-40)

a’)/__]-_w/_ C].e/
e Ty 6 2 ]
T2
PSR- R
Ico 'O Ico ¢
T
’ 1 ’ m 1 ’ ’ I o) I (o]
vie-=vi+ Bl (1+-=e + +——h)-—h
4 Tmz// Tm ( ( Z)W v sz’[/ me
wl_____]_._a)l_KCTle/
' "-'2 14 ,1.2 (4
2
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r _ ) __I_O
€p = 8110y + AV + aj3B, - By
cC m

r . . __L_O
€g = dipe(¥y  +AYy) * 8By + dyjelyy, + Avy) * 4B, K _K_ hy

' _ . - . _I (@)
ey = T s (vy, FAYY) v 8By - dpys(yy FAYy) ARy K K h,

= sin ! 6sB, + sycod + 86 B, ) -
ABl = gin ~(cycHs le Pe cvlccﬂlc s svlcc le Blc

Ay = tan_1 g; (-(s¢s¢ + c¢s@c¢)sﬁlc + (cysé - swsec¢)cvlccﬁlc
1

+ cBcdsy, cb ) - v
le"1c le (A-40)

(Cont.)
D, - (-(s¢c¢' C¢SQS¢)SglC4-(c¢c¢+-s¢ses¢)cvlccﬁlc

- ces¢sylccﬁlc>

. -1
AR, = sin (cwcesﬁzc swcecvzccﬁzc s@svzccﬁzc) BZc

Ay, = tan-1 g; ((sws¢ + c¢s@c¢)562c + (cyso - s¢s@c¢)cvzcc62c

+ °9C¢S”zc°52c> " Yae

D2 = ((swc¢ - c¢s€s¢)s§2c4-(c¢c¢4-swses¢)cyzcc62c

- ces¢svzcc52c)

As stated above in (A-35), we desire to put the system into the
form

x = Ax + g(x) (A-41)
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where A 1is a constant matrix representing the linear part of the
system and

g(x) = F(x) - Ax (A-42)

where, just as in (A-36),

Lim lgGll _ 0

(A-43)
=l - 0 "=

A is computed by linearizing F(x) about the equilibrium X,»
i.e.,

oF (x)

= 5% l > (A_["[")
X=X
e
where
[ BFl aFl
Bxl éxg
. (A-45)
8F9 8F9
Bxl 8x9
and in this case
xe =0 . (A-46)

Performing the above differentiation we obtain Fig. A-6a, repre-
senting the linear part of the system, where the Aij's are given
in Fig. A-7.

Since 6g, Yo, and ¢, are << 1 1in radians, a Taylor
series expansion was made of the Aj:'s about 6, =0, 9o =0,
¢o = 0, retaining the constant terms and the linear terms as good
approximations of the values of the Aij's, i.e.,
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where 0 = (0,0,0). The results of this approximation are given in
Fig. A-6b. :

If the effects of nonzero equilibrium are assumed to be negli-
gibly small (something that remains to be proved), then the equa-
tions of Fig. A-6a become those of Fig. A-8 where the variables
v’, '’ have been redefined to be dimensionless, i.e.,

v _ 1 ’
Vg = XK Vo s etc.
m cC
(A-48)
T
wg = K 3 w! > etc.
c 1l

Note that it is in this simplified form that the decoupling feature
of the "paired tracker" design is evident.

The state equations of the model based on the tracker rate
model are

v_ -1 ., ‘m AR I .0 _1I .0
V¢ - T Vo + T £ Kc (1 + T >€¢ + w¢ + K h¢ T h¢
m m 2 m m
KT
(Dl=-.l-(DI-C1€,
¢ T o)
2 T2
(A-49)
K T
o _1 . ‘m Lo+ ol + Ln - Lopo
Vg = T Vo + - f Kc (1 + = € + Wy + X he - he
m m 2 m m
KT
'I__L /_C].;
Wg = = T % 2 o
2 T2
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" 1 ' m 1\ ' I .0 I .o
=-—v, +—f|K (L+—=)e/ +w +3=h =T h
Yy TV Ty c ( Tz) v TRy T
KT |
AP SR <3 N
Y T, ¥ 2 Y
2
€/ = a, .AB, + Ay, + a,, AP - L _po
o T 211°P1 T AYL T 213%P) TR KR T
r . L] - —I—. o
eg = djpc(vy, + AY,) * APy + dpgelvy, + Avy) * 4B, - % K_ By (A-49)
(Cont.)
o . - . - I [0
A S T PR PR D B S
/ I'4
8B, = - s(oy +V)Y—6“C(M '+V)Vl
1 1 lc I 1 le/ I
. v, v, vy
Ayy = = H E@By + By ey Fvg ) T F vl + By dsav ) T
. v, vy
ABy = s(Av, + vy ) T + ey, +v,) T
v’ v, V@
A - _8 _ v
AY, = I t(AB2 + BZC)C(AW2 + vzc) I t(AB2 + Bzc)s(Av24-72c) T -

These equations are linearized exactly the way Eqs. (A-40) were
and the result, assuming nonzero equilibrium effects to be negligi-
ble, is given in Fig. A-9. Note that there are ten state variables
as opposed to nine for the tracker angle model, the decoupling is
not evident, and the matrix A has one zero eigenvalue (due to the
column of zeros). Since the stability analysis requires that the
linear part of the system be asymptotically stable, this model will
not be considered further.

The model based on the tracker angle model in the simplified
form (assuming zero offset effects) will be the only one whose sta-
bility is studied herein. Its relationship to the model analyzed
and simulated by Doolin and Showman [1] and [2] can be seen by
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recognizing that they study only the linear model. Their model is
obtained by neglecting the Avyj, Ayp variations in the processor,
linearizing the function £(°), and linearizing the tracker rate
model. The latter step is carried out by turning the tracker dif-
ferential equations into incremental equations by multiplying
through by an infinitesimal time At, wusing the approximations

PAL = Ad
qAt = AS (A-50)
rAt = AY

and ignoring the variations Af, Ay 1in the right hand side. One
then obtains the approximate gimbal angle errors Aa, Ay

BBy = (57, )06 + (ev; Doy
A$l = A¢ = (tBlccvlc)Ae + (tﬁlcswlc)Aw

(A-51)
A8, = - (SVZC)AG - (cvzc)m!/

AY, = A + (thccvzc)AG - (thcsvzc)Aw ;

It turns out that (A-51) represents the first order terms of a
power series expansion of the tracker angle model equations about
o =06=19 =0,

The Popov Approximation

An analysis of the simplified system where the only nonlineari-
ties considered are those of motor saturation has been carried out
literally because the numerical computation of the coefficient
matrices was too sensitive. The simplified system is represented
as

x = Ax + Gf%(u) , (A-52)
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where G is a 9 x 3 matrix, fa(li) is a three vector of satura-
tion functions obtained from g(x) by deleting all nonlinear terms
except saturation and linearizing the arguments of the saturations,
and u 1is a three dimensional vector. These terms are:

KX
0 - 0 0 0 0 0 0 0
0 - ;‘-— 0 0 0 0 0 0 0

m
. .4 -
T2 0 %, 2t51cc'yl 0 0 Ztﬂlcs'ylc 0 0
KX
0 0 0 0 - 0 0 0 0
A= o 0 0 0 -4 0 0 0 0
m
0 0 0 -3 0 -1 0 0 0
2 2
KK
0 0 0 0 0 0 0 - = 0
0 0 0 0 0 0 0 - }L 0
m
0 0 0 0 0 0 -+ 0 -k
2 2
0 0 0
A-53)
.
L 0 0
cm
0 0 0
0 0 0
G -
0o i 0
K7
cm
0 0 0
0 0 0
1
0 0 K~
c.m
xT ale’ v " 8 v, o 1[1’ v (.l)’”l
I. ’ ' (' F] 9°? CH s .“,: WJ
w; o
. — . @ - —-—j’————__
0 dppslvye = V) T ¥ dpslry, T Tpl)



K

T K 7
£3(y) = L [ - . q <1 - w, 1 .0
=] £ {xc (1+ Tz)d12 "ne = 7ye) ¢ O]+ R djpetny, - mppdeg + g

I

or

a .y _ f 1,0l _1,0

f (u) = f 1ue + X he} X he
m m

£ Ju +—I—h°}-ih°

v K9l K

If we define T to be a matrix whose columns are the eigenvectors

of A, and relate y to x by
x =Ty
we obtain
y = T laty + T lee? (w)

It can be shown that

T-lAT = diag 0, 0) O: - L, L) ]
T

-1
m Tm m 2 2

-1
T
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where

-1

-1

T

can be written as
T
2 .
0 (212talcclylc) T 1 0
m
I(t, - 7.)
0 0 _2.__2_111_ 0
l(ml(c‘r
0 0 L -21'21'mt61 ey
2" "n
~1
Yie ! ° '
o 0 0
TmeKc
. T
1 -1 0 —n.
e 2" Ta
—=L o 0 0
871¢
[} 7] (¢} 0
~b 0 0 0
871
KK« 27,t K K tB. cy
mc m 2mmec lc 'le
- 0 et T3
0 0 ] o
KKt
e m
0 0 1 -5
2
KK T
mc'm
I(‘v2 - Tms 0 0 0
KK 7
mec'm
0 0 0 T
0 [} 0 ]
T 7, K K 2KK1-2:ﬂ CY, . T
m2'mc 1 —2e.tB, o mec 2 1lc 'lem
(rm - T 1 2%P1e%71¢ I(‘t2 - T
0 0 1 Tm‘m‘c"Z
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0 0 0 0
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21,5818 - T
-8 l(mkt:"mwylc
T1e T
-ty l(ml(t:‘rms'vlc
1le Ic'ylc
2 2l( K t 8
0 2" mmc Blc T1e
I(ry, = 1)
0 1]
0 Km:c'rm
22 KK 8 s
2e.t8. 8 AN PR T
27"1c®*"1e I('r2 - T
0 0
2 R TZTmeKc
I('r2 -

(A-57)

(A-58)



If we now proceed to "tear" the system by defining

T
z- = [y4, Vg Ygr Vg5 Vg Y9] (A-59)

where superscript T denotes transpose, it can be shown that the
system equations will reduce to the form

* *
Az+B fa(u)

N
|

(A-60)
. * *
u=Hz+J fa(u) ,
where
*
J =0
*
R AR SRR
m m m 2 2 2
Kme 0 2T2TmetalcSrch
I(T2 - Tu? I('r2 - THP
K
I
Km
0 0 i
%*
B = I
Kt 2K thﬁ c -2 2K th
m 2 m 2 " 1lc ch To%n 1csylc
I(Tm - Tz) I(T2 - Tm) I(T2 - Tup
0 KmTZ 0
I(r_ - Tz)
0 0 KmTZ
I(Tm - T2)
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] » 2 L} 2 » 2 ¢

] o

KT
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Taking the Laplace transform of (A-60) results in the system

u(s) = S H(s1 - ANHBER W) = - W(s) £ (w) (A-62)
where
W(s) = Ww(s)

K Kc (Tl + TZ)S + 1

m
W) =TT Shs+ D, + D)

(A*63)

[ 1 "tB1.%V1c tP1e571¢
w = 0 d123(’}’1c - rY2c) 0
0 0 dy9s(Yye = Vo)

This is a Popov type model with the multiple nonlinearities ex-
pressed by the vector £f2(u) where the elements are given by

£2(u) = 26 sat|— (u; + Ihz) - Iy i =0, 0 (A-64)
;@ = sat|ye (u; Km K_ s i=190,0, 9

Elimination of Compensator Lag Dynamics

The transfer function of the lead-lag compensation network is
described by

(t;, + 1,)s + 1
G =x —L__ 2
c(s) c Tos + 1 ’ (A-65)
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where

K = 2.685 x 10° volt/rad
(A-66)

7. = 4.5 sec ", Ty = 0.5 sec .

Therefore,

G_(s) = Kc[;2f7§-+ 1] (A-67)

Considering the fact that the rotational rates of the vehicle
are much slower than 2 rad/sec, let us ignore for this treatment
the effect of lag dynamics in G.(s). With this simplifying assump-
tion, the resulting equations become

—-—(—)-Z(S =K (4.5 5+ 1) (A-68)

with a corresponding differential equatidn for each channel,
V=K (4.5 e+ €) . (A-69)
Proceeding to solve for e, é, we obtain:

€ = AV

m
I

. dlz[c(sz vy 0B + elayy + vlc)ABZJ (A-70)

m
|

v = - dlz[s(A'y2 + VZC)ABl + s(Avl + ylc)Aﬁz]

€ =AYy =P " T8y + By )t eByy F vyt 9

(A-71)
+ @By +B1) cs(vy+v) o
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v v
. (]
¢y = (hg =) - e@By + 81 ¢ ey + vy ¢ (BG - T)
v
+e@By + By ) sy ) (h?u - Tw)

(A-71)
(Cont.)

eg = dypclay, + ¥y ) ¢ ABy T dips(Avy F v, )t AY,08,
+ dlzc(A'y1 + vlc) . ABZ - dlzs(A'y1 + vlc) . AVlABZ

By defining the following variables as:

v Vv
= . o - ——6— . o - —
Py = s(vy + 7)) ¢ (B - ) ey vy (hw 1W>
v V.
= L d [ ] o - —Q - [ ] o - —
I, = = s(avy +vy.) (v 1) c(avy +v,) (hw I‘b)
v v
_(+° - _¢ . . )
P3y = (hy - ) + €GBy + B+ ey + 1) (hg - T)

]
N
o g

<0
[]
<
7l

taP, + B, ) ¢ s(av, + v, )

o _Je
Py, = (hg - 7) T e H B ¢ elvy + ) ¢ (ng - 7)) A1)

+ t(ABl + Blc) s(A’yl + ch) . (h; I

€y = PJ4

m e
I

[ . .
- dlz[c(Av2 + vzc) PJl + c(A'yl + wlc) PJ2

- . . - e ¢ . ]
s(A'yz+'yzC) ABl PJ3 s(zwl+ylc) ABZ PJ4J
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&y =" dlz[s(4v2 F¥y) T BRI Fs(avy F vy )t B, A-72)
£Cont.)

+ c(Ayz + VZC) . ABl . PJ34-C(A71+-WIC) . Aﬁz . PJ4J

the resulting state equations become:

- _,0 _ 1 . o _1 . o _1
6 =hnQ - v, + (t6s0) + (ng T vy) + (toco) (hw - vw>
;o= -y +$f<K(e +4.5¢)
Vo 5 Tt Ve T 1 c o -5 €4))
m m
o _1 - . o _1
6 = ¢o (h6 I V6> s <h¢ I v¢>
(A-73)
v = - +&f(1<( + 4.5 )
Vg T r Vo T c %6 ' ee)
m m
; s¢\/,0 - 1 et\/n0 _ L
4 _<c9)(h9 IV9>+(c9 (th Ivz//>
K
- _ - L _m :
M <Kc(€w 4.5 6))
Rescaling as before, we obtain
V//=K1K VI_K].K (V"Iho)
m ¢ m c
o' =0 =0 etc.,
e
with (A-73) becoming:
<1'>'=-KmK°[v”+(t9s¢) "+ (tbco) a
1 l¢ V¢ C V'(//J
(A=74)
‘//____1_ " 1 * - I (o]
Ve = — Y + X f(Kc(e<b + 4.5 e¢)) TRKE h¢
m c m mmec
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. Kch[ )

' _ . v _ . 7
6 = I |_C¢ V'e s¢ VwJ
. ; j; " 1 ° - I (o]
Vo =TT VoTk T £ (Kc(ee +4.5¢€)) - 7 K K hy

KmK c mmec (A-74)

° _ . mc s8¢ , " co . " (Cont.)
Y= I (c@ VG + cb Vw)
*u 1 ” 1 . 1 (o]
V= -=v +———f(K (¢ +4.5¢&)) - ——1° .

w Tm w Kch ( ¢ w w ) TmeKC w

By separating the linear and nonlinear terms in (A-74), putting
them into the required form (A-41), and assuming that AB% and

AB? are negligible, it can be shown that the six dimensional state

equations take the form shown in Fig. A-10. If we wish to consider
the six dimensional model, and include only the nonlinearity due

to the motor saturation function, the form of Fig. A~10 reduces to
that of Fig. A-11

e _ | ]
ABl = LA61(¢8’ ee: we)J 1] etc.
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Fig. A-10 Six Dimensional Approximation of O0AQ0 "Paired-Tracker" System Model
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APPENDIX B

SIMULATION RESULTS

This appendix describes the simulation effort performed in
support of the study. The type of simulation used and the results
obtained are discussed.

The simulation uses a fourth order Runge-Kutta integration
package with a 0.1 sec integration time step size. The simula-
tion runs in 1/3 real time. The simulation required that the sys-
tem be described in the basic state variable form

) =f X. ]'_,'=-’l, ...,9
X, g( ) j

The program has a plotter option (CALCOMP), which was used to ob-
tain the figures presented below. The flow chart is presented in
Fig. B-1 and in Appendix G. This is the flow of the main routine
only. The subroutine of chief interest is "AFX," which contains
the state equations. It is basically AFX that was modified for
the various models. Listings are available upon request from the
Research Department, Grumman Aerospace Corporation, Bethpage, N.Y.,
11714,

Figure B-2 outlines the initial run plan. Five sets of rums
for various tracker cases with the same initial conditions on the
state (except for changes in the total momentum Th9) are pre-
sented. The system parameters are also given. Figures B-3 and
B-4 present the results of Runs No. 2 and No. 5.

For all runs of the initial set there was a basic similarity
of performance. Some unexplained differences in the "6-D" model
do exist. These differences are not consistent channel to channel
or run to run but do indicate that the lag in some minor way af-
fects performance.

The main concern as regards comparison, is the relation be-
tween "AN" (the exact model) and "MV," the model that is identical
to the Doolin-Showman model in the feedback path. The cases con-
sidered initially, for which "AN" has good performance, show a
nearly identical performance for "AN" and "MV." The only differ-~
ence occurred in the time of wheel acceleration sign change, a
difference caused by the differences in error signal.
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CONTINUE
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READ

ALP

ICNST (24}
FCNST (28)

71! Bl’ 721 ﬂz

h¢, h 0, h#’

£ ICNST (10)
YES ! NO

NO

CALL

CONTINUE

READ
READ b 01¢;v lva'
X(1) e
v Yo% Yy

™ = 763

T1 = 45

7 = 05

XKM = 1B

XKC =2.685X10

All = AI3=0

AITREN = 1500

F2LIM = 26

ICNT = 9

YES

NO

Xﬂ)=g|(¢,0,...du¢ )
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NO
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WRITE
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YES

ICNT =
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ICNST (13
<1
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CALL
PEAIQ

[

CALL
AFX(JSW)

JSW=0
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READ CALL
Qa,d QGEN
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CONTROL

NO_
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No |

YES
ICNT =0

:

CONTINUE

y
CALL

DERIV

Y(IAT) > YES

FCNST (5

CALL
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Fig. B-1 Generic Simulation Program Flow Chart
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L6

Inner Gimbal Commands Total Axis Momenta

R;n s:l.n('Y1c - 'Yzc) Bl:egreesa 2¢ Ih:ft-i:gseclhz
1 0.1 0.0 =30.0 0.0 0.0 0.0
2 0.1 30.0 -30.0 0.0 0.0 0.0
3 0.1 30.0 -30.0 1.0 1.0 1.0
4 1.0 0.0 =30.0 0.0 0.0 0.0
5 1.0 0.0 -30.0 1.0 1.0 1.0

L]
Initial Conditions: ¢, 6, y = 15.0 ; Vor Voo vw =1 ft-ll} sec;

w?, ®g» a)w = 100 volts

System Parameters: T, = 4.5 sec; Ty = 0.5 sec; Kc = 2,685 105
volt/rad; K = 1/13 ft-lbf-sec/volt;
I = 1500 alug-.‘ft:2

Basic Nonlinear Model - AN Motor Voltage Only Nonlinearity - MV
Basic Model with Limiting - ANL Six Dimensional Model - 6D

Fig. B-2 Control System Simulation Run Plan
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A run was then made with initial condition identical to those
in Fig. B-2, but with s(y1, - ¥2.) = 0.1 and By, = By, = 30.
The results of this run are presented in Fig. B-5. It can be seen
that "AN," "6-D," "ANL" are unstable and that "MV" is stable.
Study of this case reveals the fact that at t = 0 the error
signals ¢¢, €g, €y Were negative for "AN," "ANL," "6-D" but pos-
itive (the necessary sign for stability for initial conditions
chosen) for "MV." Thus the nonlinear coupling in the true error
signals can provide the wrong error voltage sign for some tracker
cases. Table B-l presents one set of tracker commands which will
yield this situation for ¢ = 6 = ¥y = 10° at t = 0. 1In all
cases the restriction Ivlc - VZc' > 10° 1is obeyed. These cases

should all be unstable for "AN," "ANL," and "6-D" but stable for
”MV . n

From this information it can be concluded that in general
neither "MV" nor any other model that is based on linearizing the
feedback is valid for a stability study. The exact model, "AN,"
must be used.
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Table B-1

PRESUMED UNSTABLE CASES

Command Gimbal Angles (Degrees)

vic Y2c Blc Bzc*

5 =5 40 50

5 =5 45 40

5 -5 50 35

5 -5 55 25

5 -5 60 10
10 0 45 45
10 0 50 35
10 0 55 25
10 0 60 5

— — — o, = = = . O=0=
at £t =0 o =6 =19 = 10°; Wy, = Wy w¢ 0; h¢ he h

* :
This value and higher lead to predicted unstable cases for these
values at t =0
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APPENDIX C

ANALYTICAL STABILITY STUDIES

In this appendix the stability analysis of the linear part of
the system described in Section 4 is shown to be quite straight-
forward as a result of the linear decoupling feature of the "paired-
tracker" design. 1In addition, the stability of the Popov approxi.-
mation (motor saturation only) is examined and it is shown that,
at present, the available frequency domain techniques are not suf-
ficiently well developed to completely prove the absolute stability
of that model. Note that in Appendix B it was shown that this ap-
proximation does not adequately represent the stability properties
of the actual system; however, an examination of its stability
properties is required in Appendix F, part (ii).

If all nonlinearities of the system are ignored, then the
system equations reduce to

x = Ax | (c-1)

where x 1s a nine vector as before and A can be partitioned
into 3 X 3 submatrices, i.e.,

A, A A
A=10 A, 0 (C-2)
0 0 A,

where the Aj are readily obtained from Fig. 4-6 of Section 4.

The stability of the linear system (C-l) is determined by the
roots of the characteristic equation

c(N) = det(M - A) =0 . (c-3)
Since A 1is upper triangular, in partitioned form, we obtain

c(N) = det(7\I3 - Al)det(7\I3 - Az)det(7\I3 - A3) =0 (C-4)

118



where 13 is the 3 X 3 identity matrix. Thus, this linear sys-
tem is stable if and only if each channel of the linear system is
stable. This is a direct result of the linear decoupling inherent
in the "paired-tracker" design.

Thus, the stability analysis of the linear system is reduced
to determining the stability of each channel separately, i.e., de-
termining the stability of each matrix A; for i =1, 2, 3. The
problem is further simplified by recognizing that Ag = A3. Sta-
bility of the system (C~1) is obtained if the characteristic roots
of A; and A, have negative real parts. Their corresponding
characteristic matrices are:

Kch ]
A
I 0
T, + 7T T
_ -1 2 1 .1 -
Ly -ap = | -7 (+7) - (c-5)
m 2 m m 2
1 1
p— 0 AN+ =
L (r+ )
and
Kch
A
I 0
T, + 7T T
- - | - 1 2 1 J— . -
(MI3 = Ay) = ay T 1 (r+ ) . (C-6)
m 2 m 2
a
- 0 (r+ )
2 2

where aj = d125(Y1c =~ Y2c)- The characteristic equations are

cl(7\) = det(?xIB-Al) =?\<)\+-T—1->(7\+_T_1;>+ mIc
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and

KK T,+7T
B _ _ 1 1 me L 2/
cz(x) = det(%13 AZ)_ K(X4-Tm>(%4-T2)4jal I Tn'2 \x+

1)

(C-8)

The roots of these equations can be found by root locus techniques
from the equation

N — )
KmKC Ty + ) ( Ty + T, _ i
RS G Heey T
m 2

where aj =1 for the roots of c¢j(A) =0 and aj = dios(vic ~V2¢c)
for the roots of c¢9(A) = 0. Substitution of the parameter values
yields

A+ 0.2 _
107 XSG T 001+ 5) -

1 + a 0 (c-10)

Simple root locus considerations show that the roots of (C-10)
have negative real parts for all a3 > 0, in fact, the roots of
(C-9) have negative real parts for all positive finite values of
the parameters. Thus, the linear system (C-1) is stable for all
positive values of the system parameters. Note that for aj to
be positive it is necessary that sgn djp = sgn(yj. - Y2.). This
is how the functional form of the choice djp = 2.0 sgn(vi. - v2¢)
is arrived at.

Thus, we have shown that the stability analysis of the linear
part of the system can be accomplished by direct application of
simple root locus concepts, and that this is a result of the linear
decoupling feature of the "paired-tracker" design.

The stability analysis of the Popov approximation to the sys-
tem model should be equally straightforward; it is not, however,
because the available frequency domain techniques are not fully
developed. This approximate model was derived in Appendix A and
is summarized by
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u = - W(s)E2(u) (Cc-11)

where

W(s) = w(s)W

() Kch (Tl + TZ)S + 1
I S(Tm§ + 1)(TZS + 1)
(c-12)
[ 1 -tﬁlccylc tBlcsrylc
W= 0 dj,slry, = vy) 0
0 0 dps (e = VaQ)
o o)
Ih, Ih,
a _ 1 i - i A
fi(u) = 26 sat 26 (ui + Km ) Km , i=1, 2, 3

and u 1is a three vector.

Let us first consider the special case Bj. = 0 1in which
event the three channels are completely uncoupled. Then we apply
the special form of the Popov theorem [15] to a single channel.

Theorem (Popov). — For the particular case of a system
(the linear part has poles with zero real part) to be
absolutely stable in the sector [e, K], ¢ >0 (i.e.,
cuf < ujf?(uy) < ku? , for all wu; # 0), it is suffi-
cient that there exists a real finite number q such
that for all o

Re (1 + iwq)W(iw) + —115 >0 (c-13)

and that the condition for stability in the limit (i.e.,
if there is a single pole at the origin then
lim Im W({iw) = - ») 1is satisfied.

w — 0+
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In this uncoupled case we have, for a single channel

Kch (Tl + 72)1w + 1
I ia)('rmia) + 1) (Tziw + 1)

W(iw) = a; (c-14)

where aj 1is either 1 or djps(¥Yie. = V2c)s, and (1 + iog)W(iw)
is positive real since the poles and zeros of W(iw) are all real,
the gain is positive, and q can be chosen to make the poles and
zeros of (1 + iwq)W(iw) interlace. 1In addition, the condition
for stability in the limit holds since the gain is positive. Un-
fortunately, the saturation function does not £fall into the [e, K]
sector since for large lui] the gain of f?(ui) goes to zero.
Perhaps one can try to use mathematical artifices to make the
system satisfy the theorem but no motor known to us can develop
unlimited speed for unlimited input for any finite time. It is

the pole at the origin that causes the failure of this application
of the Popov theorem.

In [16) Brockett quotes another version of the Popov theorem,

viz.,

Theorem (Brockett). — Let q(s) and p(s) be poly-
nomials without common factors and let

x =Ax +bu ; y = ch (c-15)

be an irreducible (controllable and observable) repre-

sentation of G(s) = q(s)/p(s). Suppose p(s) has no
zeros in the half-plane Re s > 0. It follows that the

nonlinear system

x = Ax - bf(c’x) ; 0 < £(3)/y <K (G-16)

has a null solution which is asymptotically stable in
the large provided there exists a real q such that
(1 + qs)G(s) + 1/K is positive real and

2@ (ky-£2()) #0 for y#0 . (c-17)

Now we have shown that (1 + gs)G(s) + 1/K 1is positive real
for all positive K; therefore we can choose K large enough for
(C-17) to hold so long as |Th®/26 Ky| < 1. Thus, the system is
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globally asymptotically stable so long as B3¢ = 0, Yic ~ Y2¢ # 0»
the gain is positive, and the initial total momentum is within the
system capacity.

For the case PBj. # 0 the pitch and yaw channels are still

globally asymptotically stable by the arguments above, but the
roll channel cannot be handled as above because it has inputs from
pitch and yaw. This situation is in the class covered by special-
izing the work of Sandberg [17].

Theorem (Sandberg). — Let tPwyq(t) € 2£1(0,®) N £,(0,x)
p=10,1,2. Let p(t)=e(t)+ [ wii(e-1)£f(e(r))dr, £ >0
where p(t) € £mN(0,w). (p(t) is measurable and bounded

on (0,o) and e(t) ¢ £N>(e is measurable on (0,x) and
all its time truncations are square integrable). Let

00

_ ~st
Wll(s) = Wll(t) e de , Re s >0

Suppose that

i) (l + i(a + ﬁ)wll(s)> # 0 for Re s >0

i1) 3 - o) suwp (14 ¥+ PIw ;o)) wy () [P< 1
=0 < W < ®

Then e(t) € £WN(0,m), there exists a constant c¢, which

depends only on w, a, £, such that

sup le(t)]| < c sup [p()]
t>0 t >0

and e(t) - 0 as t— o whenever p(t) > 0 as t - o=,
Note that o < fi(ul)/ul < B and fi(O) = 0 are also
required.
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The theorem is easily related to the diagram below where p(t)
is seen to be the input to the roll chamnel from the pitch and yaw

a
-£5 (a2)

2 ] -~
tBlcc'ylc

a
f3(u

)
S By ST

Fig. C~1 1Illustration of System in Form for Application
of a Sandberg Theorem

channels and e(t) is the roll channel error signal. Unfortu-
nately wjj(s) contains a pole at the origin and therefore

twy1(t) 1is not £7(0,») or £9(0,»). That is why the system has

been drawn as shown to create wil(s) = wyy(s) (wyy1(s) + l)'1
which does satisfy this condition because all poles of wil(s)
are well into the left-half plane. It is easy to show by root
locus arguments that condition i) holds for o = -1, 8 =0
which are required for f%(ui)', the redefined nonlinearity.
Condition ii) turns out to be

1.2 Wy ()
26 - emaxluy; (1) (1+ 3+ Phuf; (10) ' = b el

T+ v, o | <1

(C-18)

but, unfortunately, it is easy to see that the expression has
value 1 at w = 0. Therefore, the result (global stability for
the coupled system) cannot be established this way.

The only remaining alternative is to try the very general re-
sult of Yacubovich [18]. (Brockett's theorem, given above, appears
to be a special case of this theorem.) His work is apparently the
most encompassing frequency domain stability result. From it one
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can obtain the Popov theorem, the circle criterion, and results
that are stronger than those of Popov. The matter is too compli-
cated to present in detail, but in essence it is that the system
must have a Hurwitz linear part (all eigenvalues strictly in the
left-half plane); then one forms quadratic: forms in the nonlin-
earities and their arguments- that are nonnegative, and a compli-
cated quadratic form is developed from the system function and the
quadratic forms in the nonlinearities. If this quadratic form is
negative definite in the nonlinearities (i.e., the f?(ui) are

considered as variables) then the system solution goes to zero
with t > «» and it is square integrable.

The matrix system was reformulated to fit the conditions of
the theorem by extracting unit gain from each saturation and using
it to shift the system poles as illustrated in Fig. C-1. We were
not able to satisfy the other conditions of the theorem despite the
variety of formulations of the Yacubovich function that were tried.
Thus, we have to conclude that the Popov approximation is likely
to be absolutely stable on the basis of single channel evidence
and a visceral intuition; however, the most powerful frequency
domain theorem could not be used to prove this. Further, the com-
putations required by the Yacubovich theorem are very difficult
and tedious to do by hand. This indicates that as it now stands
some computational aid is required to make its application to
large systems feasible and practical.
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APPENDIX D .

SOLUTIONS OF COMPUTATIONAL PROBLEMS
(1) Solution of the Liapunov Matrix Equation

A summary of four alternative methods for computing the solu-
tion to the Liapunov matrix equation will be presented. Of the
four algorithms to be discussed, the first has been described in
Geiss et al. [19]; the second, third and fourth are based on the
work of Ma [20], Smith ([21], and Jameson [22], respectively.

Algorithm 1. — This is a reliable brute force approach in which
the Liapunov equation, viz.,

ATP + PA = - @ (D-1)

is to be solved for P, A and Q being given. Here P and Q
are assumed to be n X n and assumed to be stable throughout (the
stability criterion is not necessary for algorithm 1).

Expanding (D-1) and rewriting it as a vector equation, we
obtain

P11 911
pln qln
P q
21 21 )
Amod = ’ (D-2)
Pon 991
Pon ] L hn |
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. 2 2 . .
where Amod is n” x n” and is given by

- AT T -
Amod—A®In+In@A (D~3)

in which I, is the n x n identity matrix, and (X) is the
Kronecker product [23]. For n = 2 we have

Amod I i -+t —-=—==- : - (D-4)

The solution of (D-2) is then simply a matter of inverting Ap,qg
and reconstructing the P matrix. One can readily see the compu-
tational difficulties that would arise in attempting to solve the
original Liapunov equation for dimensions much above 10. Inver-
sion of matrices well above 100 x 100 would be necessary. If
only the core storage of a large machine is used, matrix inversion
is limited to matrices less than 150 x 150.

Three rather more elegant developments follow.

Algorithm 2. — The matrix equation, (D-1), can be solved for P as
follows: Assume that

a, T
(h-A) T, i=1,2, .., ZOL.=n (D~5)

are the elementary divisors of A (and thus ATy over £, the
field of complex numbers. Then there exist matrices U, V such
that

A = U'IKlU (D-6)
and
AT = V'lxlv , (D-~7)
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where Aj is the Jordan normal form for A (and thus AT); i.e.,

N . {
A, = diag JALT + N , AI + N , A N + N (D-8)
1 1 1 oy ay 2 a, a, T ar a.
Ia = (6ij) s i,j =1, 2, ..., au (D-9)
L
Nd = (6i+1,j)’ i,j=1, 2, ..., au (D-10)

and 06535 1s the Kronecker delta. The Liapunov equation then be-
comes

~

AY+ YA, = -D, (D-11)

1 1
where

Y = VPU (D-12)
and

D (D-13)

1l
<
L
c

In [20], Ma gives a finite series solution for the matrix
equation

~

AX - XB = C , (D-14)

where X and E Naremin gordanmnormal form. Thus, via the identi-
fication X =Y, A= Aj, B= - Ay, and C = - D, the solution to
(D-11) is obtained from Ma's solution to (D-14). The solution is:

a.,+a, =2
|

z (O + xj)-(n+1) (-1)" z _('n_-nﬁTNgiDijNgj , (D-15)

Y..
1]
=0 o+1=n

where Yj3i and Djj are the 1ij elements of the partitions of
Y and D, whigh are the same as the partition of Aj. Finally,
assuming that Al’ V, and U can be computed, we obtain P as
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p=vilyw (D-16)

from (D-12). Note that since A 1s assumed to be stable, all A;
will have negative real parts and

MoFN#O i,j=1,2, cou, T . (D-17)

Thus only the first case of Ma's solution, (D-15), need be con-
sidered here. Further, if A 1is of simple structure (i.e., the
eigenvalues are distinct), then the solution is

-d;
J . .
y]._j = X;f:—?; , i,j=1, 2, ..., n , (D-18)

where Yij and dij are elements of Y and D, respectively.

The main drawback of this method is the requirement that A
be provided in Jordan normal form, along with the appropriate
transformation matrices U and V. There does not appear to be
any reliable computational procedure for doing this for arbitrary
matrices, in particular for those of the degenerate eigenvector,
multiple eigenvalue variety.

Algorithm 3. — Smith [21] presents a scheme for obtaining an ex-
Plicit expression for P in (D-1) that uses the n2 elements of
A in the relatively simple operations of matrix multiplication
and addition. 1In the more difficult operations of determinantal
expansion, only n wvariables are involved.

Define constants kl,'..., kn’ and an n X n matrix G by:
det (ML - A) = M+ kT 1R Lk (D-19)
[0 1 0 0 cen 0
0 1
0 0 0 1 “en 0
G = (p-20)
0 0 0 0 1
-kn -kn-l —kn-Z -kh-3 * -kl
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THEOREM 1 (Smith). — If Z 1is any n Xx n matrix,
and U= (ujj), C= (cjj) are n X n matrices satisfy-

ing

¢clu+ UG =-c¢C, (D-21)

then the following matrices satisfy (D-1):

n n .
.17l 54
P = z z u (A0 zA (D-22)
i=1 j=1
8! n
i-1
1 T j-1
Q=73 ) ) c;; (A7) za
i=1 j=1
COROLLARY (Smith). — If U = ({ij;) is a solution
of (D-21) when C = diag(ec, 0, ..., 0), then
P = S aT i-lej "L D-24
i=1 j=1
is a solution of
ATP + PA = - cZ . (D~-25)

If ¢ # 0, setting Z = c-lQ in (D-24) and (D-25), we
obtain

non i-1
_1 v N T j-1 -
P—Cz zuij(A) Qal (D-26)
i=1 j=1
which is the solution of
T
AP+ PA=-Q . (D-27)
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It remains to be shown how one obtains the (Gij) elements
to be used in (D-26). Let us define the following matrix:

ky kg kg Ky kon-1 |
ko k2 k.4 k6 . k2n-2
0 k, k, k e ko
g2 1 3 5 2n -4 (D-28)
0 ko kz k4 “en k2n-4
0 0 . k
n
where ko, =1 and kP =0 for all p > n.
THEOREM 2 (Smith). — If ki, ..., k, are real, then
the equation
GV + VG = - diag(h, 0, ..., 0) (D-29)

has the hermitian solution V = (vug) given by

n-oa n-B .
vee = 3D Y ) (DP K o(FlatBrrtsl) . (0730)
r=0 s=0

where h = det(H), kg = 1, ¢(€) = 0, when £ 1is not an
integer; otherwise ¢(£) 1is the cofactor of the element
in the first row and £th colum of the H matrix.

We see that if c¢ = h, then the solution for V given by
(D-30) can be substituted into (D-26), where u(a,B) = v(a,B),
a=1, ..., n B =1, ..., n.

We shall now show a convenient way of determining the numbers
ki, ..., k; without determinantal expansion. First, we define

s._ = trace[AV]
v
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Since kj, ..., k; are homogeneous polynomials in the eigenvalues
of A, they can be written via Newton's identities in terms of

8§15 5925 ««.5 Sp.

$1 + k1 = (0

Sy + Slkl + 2k2 =0

Sy + SZkl + Slk2 + 3k3 =0 (D-31)
s + ... ... nk =20

n n

This method of obtaining the k's 1is attractive because the com-
putation of AY for v=1, 2, ..., n is already required for
the computation of P in (D-26).

The cofactors of H are relatively easy to calculate since
the matrix involves only the variables ki, ..., k,, and many of

its elements are zero

Algorithm 4. — Jameson [22] has independently devised a technique
for numerically computing the solution to

AX + XAT = ¢ (D-32)

where A, C, and X are real n X n matrices. C 1is generally
symmetric, in which case X 1is also symmetric.

Form the sequence of expressions:

cC =0
(o]

T
C, = C = AX + XA

T T 2 12
c, = Ac; - c;aT + ac AT = A% - xa (D-33)
T T N N, TV

Cg = ACy_; - Cy.jA' + ACy A" = A'X - (-1)'xa
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The recurrence relation may also be written as

c, = aAklc - ¢, AT (D-34)

k k-1

or
k-1
c, = Ac, _, - ca’ (D-35)
k k-1 :
If C 1is symmetric, then Cy 1is symmetric when k is odd and

antisymmetric when k 1s even. Let the characteristic equation
of A be

|AT-al = Waea N Fag= (-AD(-A) ... (A=A)=0 .(D-36)

According to the Cayley Hamilton theorem this is satisfied by A
and AT. Therefore

) _.\N-1 N, _ . .N-1
CN alcN-l e+ (1) aN_lcl—-A X alA X ...
+ (-1)N_laN_le-+(-1)NaNx
(D-37)
N N-1
Cot a,C +a. G, =-ax-(-1)Nxal - a xaT
NT 2181 T 1S N 1
L \N-1 T
+ (-1 aN-lXA
Thus the solution of (D-32) may be written as
-1 T,
X=G K= L(G) » (D-38)
where
G=A.-a. A"l L+ (DM I=@+N D) @A+AT)...(A+ANI)  (D-39)
N~ 31 ce N 1 oD ... N
K=¢C, - a,C + (-1)N'1a C (D-40)
N 1*N-1 °°° N-1"1
L=Cy+ a;Cp ¢ --- +2ay 46 - (D-41)
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If C 1is symmetric then L = KI. Since the determinant of a
product of matrices is equal to the product of their determinants,
it is evident that G 1is not invertible if for any i, -7A; 1is a
characteristic value of A. The equation can therefore be solved
if and only if N + Kj # 0 for all 1i,j.

The characteristic coefficients aj may be determined by
Bocher's identities [25].

a, = tr (A)
a, = - %[altr(A) + tr(Az)}

(D-42)
ay = = Hagatr@ +ag,er@? .o+ @] = DYl .

Alternatively, they may be determined from the characteristic co-
efficients by the rule for polynomial multiplication.

By adding and subtracting the characteristic equation for A
to (D-39), G can be expressed in terms of even or odd powers
only of A,

_ [ N N-2 ] -
C= 2T A+ 1A cee ] (D-43)
| N-1 N-3 ] _
= 2Lr21A + 1,54 e (D-44)
where
rip =1, Ty, =3y 4= 23,
(D=45)
o1 = 8y Ipp T 83> Tp3 = &g,

If (D-44) is multiplied by (ry3/r27)A and subtracted from (D-43),
then AN is eliminated, yielding
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N=-2

r
11 A

I+—A
a1

UYL S (D-46)

G =2 32

T31

where the coefficients rjj are generated by Routh's rule

¥i-2,1
Ti5 T Tie2, g4l T il T, (D=47)
AN-1 can then be eliminated between (D-44) and (D-46), and this

procedure can be repeated until the right hand side is finally
reduced to the identity matrix. It follows that

' G"l - __(_ﬂN_ Hy, (D-48)
2rN+l,l 1
where

H1 = I

H2 =1
r .

- _11 -
Hy =H; + = AH, (D-49)
21

'N-1,1

Hgpp = Hy-p ARy -

™§,1

The inverse of G 1is thus expressed as a power series in A up
to the (N-1)th power.

The Liapunov equation, (D-1), may thus be solved by using the
result, (D-38), and

a) forming G-l directly according to (D-48)
or

b) forming G according to (D-39) and inverting the
resulting system of equations.
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Method b), which has been found to be computationally su-
perior, is the one incorporated in the program.

The four algorithms discussed in this report have all been
programmed for use on the IBM 360-75, and have given satisfactory
results in solving the Liapunov equation.

Input data for both an eight and nine dimensional problem
were used in the trial runs, with the elements of the A matrix
for n = 8 being taken from the dynamical equations of the U.S.
Naval aircraft E2A lateral control system. The A matrix for
n = 9 was chosen out of convenience, as one for which the Jordan
form and transformation matrices were known.

PROGRAM 1 (Full Inversion): Requires problem dimension (n),
Q, and A as inputs. Computing time for a nine dimensional
problem = 1.22 seconds, with t proportional to (n)6.

PROGRAM 2 (Er-Chieh Ma Method): Requires n, Q, A, the ele-
ments of the elementary divisors of A_ (and thus AT), and the
transformation matrices U, i , V, V. as inputs. Computing
time for a nine dimensional problem = 0.1l seconds, with t pro-
portional to (n)?. Note that the computation of the transforma-
tion matrices for a general nonsymmetric matrix, A, 1is nontrivial.

PROGRAM 3 (Smith's Method): Requires n, Q, and A as in-
puts. Computing time for a nine dimensional problem = 1.06 sec-
onds, with t proportional to (n)2.

PROGRAM 4 (Jameson's Method): Requires n, Q, and A as
inputs. Computing time for a nine dimensional problem = 0.5 sec-
onds, with t proportional to (n)4.

So far as accuracy is concerned, all the methods give com-
parable results for the dimensions we have used (up to n = 9).
Accuracy deterioration increases with dimension for all programs,
but the one that suffers least in this respect is Program 1 (full
inversion method), which is also the one that suffers most with
respect to increase of computing time with dimension.

It appears that, faced with the problem of employing a com-

puter program for solving the Liapunov equation, one should choose
between Program 1 (full inversion) and Program 4 (Jameson's method).

136



The full inversion method suffers least in accuracy deterioration
with dimension increase, while the latter is superior in terms of
computing time variation with dimension. Program 2 (Ma's method)
is not particularly practical in that it requires the Jordan form
of A as well as the transformation matrices as inputs. There
does not exist at present a program that will find the eigenvalues
and eigenvectors for any general nonsymmetric matrix with a reason-
able degree of reliability. Even if one did exist and was used as
a subroutine for Program 2, the total computing time required would
far exceed the 0.11 seconds for n = 9 reported here.

It should be noted that Jameson's method, although it was de-
veloped independently, is essentially a refinement of Smith's ap-
proach. Both methods are more prone to numerical inaccuracy for
the case of ill-conditioned A matrices than the other two ap-~
proaches. Program 4 (Jameson's method), which utilizes triple
precision accumulation, seems to have alleviated this problem and
thus is superior to Program 3 (Smith's method) for which only
double precision was feasible.

(ii) Parameterization of the Set of Positive
Definite Matrices and an Algorithm for Generation
of Its Elements

This section describes an efficient algorithm that generates
arbitrary n X n positive definite symmetric matrices, as required
in Section 3. These matrices were used as candidate "Q" matrices,
which in turn generated "P" matrices through the solution of the

Liapunov equation, ATP + PA = - Q. Having parameterized the Q
set, one can proceed in orderly fashion in pursuit of an "optimal"
quadratic form Liapunov function to resolve the domain of stability
problem.

The generation of the set of positive-definite n X n sym-
metric matrices can be carried out by resorting to the brute force
approach of forming an arbitrary n X n symmetric matrix and then
applying the determinantal test [26] for positive=-definiteness.

The arbitrary choice of n(n + 1)/2 matrix elements followed by
the evaluation of the determinants of the n-principal minors
would be necessary. It would be desirable to generate these
matrices by a procedure that guarantees all to be positive-definite,
and in addition, that the entire set of positive-definite matrices
be spanned.
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It is well known [26] that all real symmetric matrices are
orthogonally similar to a diagonal matrix, and that all positive-
definite (pd) matrices are then orthogonally similar to a
diagonal matrix with positive-diagonal elements; i.e., let Q be
pd, then '

T

Q= S"AS , (D-50)
whetre
~ diae Jh . 2 A
A = diag 1%1, 97 N
A> 0, i=1, 2, ..., o (D-51)
STS =1

Thus, the parameterization of all pd matrices, Q, is reduced
to the parameterization of the group of orthogonal matrices, S.

In [9], Murnaghan proves that the parameterization of the
group of n X n unitary matrices U 1is accomplished by the fac-
torization

n-1
U=0D Un-k =D x Un-l X ... X Ul , (D=52)
=1
where
i3 id i5% id
D = diag {e , e 2, , e n 1, e n} (D-53)
n-1
- [ ]
Uy 1 U Opr %) [ Vien (O 90 |
I=k+1
2n - k(k -1
SRR TCRR I
2 k) (k 1 (D=54)
o =i ?2( )4 14n-4,
L = 2n - k -22)(k - 1) + (-0,
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Ui = 1, i # k,4
ukk = cos &
uﬂz = cos 8
U, (6, o) = (uij): (D-55)
- s . A s
U4y 0, 1#3j, 1i,j # k,.
_ _ ~io _. P
Uy, = e sin
_ +ioc .
ugk =+ e sin 6 ,
"TLe<T T, -3<0<y s "3<0<y, T5<0<7
The factorization of the group of orthogonal matrices is imme-
diately obtained by requiring U to be real; i.e., o =0 = 0,
op =T, T O T, k # n, and -7/2 < 6 < 7/2. In particular,
n-1
s =D Il S| (D=56)
k=1
D, = diag {1, , 1, £ 1} s (D-57)
n-1
- [ -
Sy 1l G EC®) s 80 = U6, 0)
=k+1
(D-58)
2n =~k - 2)(k -1
h = (2n 2 ) ) +n - 4.

This factorization contains
or a total of

one more than required. Thus,

(n -1 - 2)/2
[n(n - 1)/2] + 1 parameters.
(D-51) raise the number of parameters to

thetas and n phis,
The n lambdas in
[n(n + 1)/2] + 1, or

if we restrict S to be a rotation
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matrix (i.e., choose ¢, = 0), the number of parameters will be
n(n + 1)/2, the number required to represent an arbitrary sym-
metric matrix. The choice ¢n = 0 is made into order to rotate
and scale the ellipsoid associated with the quadratic form formed
from the pd matrix and without reflecting coordinates or per-
muting the coordinate system.

The factorization of a pd matrix of dimension three is thus
given by

P = SiAS (D-59)
where
xl 0 0
A= 0 %2 0 (D-60)
A
0 0 3
and
S = SZSl = 823(¢2)512(91)513(¢l) , (D-61)
1 0 0
823 = 0 c¢2 -s¢2
O S¢2 C¢2 J
- 1
cGl sGl 0
SlZ = s@l cbq 0 (D-62)
0 0 1
c¢l 0 -s¢1
513 = 0 1 0 s
s¢1 0 c¢1




. Thus, it is clear that by using this representation under the
restrictions

Ki >0 R i=1,2, ..., n
-T < ¢i < T, i=1,2, ..., n-1 (D-63)
2 < ei < 5 i=1, 2, . 2 R

the candidate Q matrices are guaranteed to be positive definite.
For ease in programming the constraints, (D-63) were removed by de-
fining

M

A, = e l_ s Ny real

(D-64)

D
]

(- 7T+ 9{ mod 27) , 9{ real

and recognizing that since the ¢.,'s only appear as arguments of
trigometric functions, they can be arbitrary real numbers.

(iii) Penalty Function Formulation and Gradient Search
The problem is to determine £/ where

J = min V()
X € E

. (D-65)
E: (le(x) =0, x# 0)

using gradient search. The penalty function formulation is used to
convert the constrained minimum problem, wherein the constraint
surface (V(x) =0 is determined by the nonlinear part g(x))

of the original problem (ﬁ = Ax + g(x)) to an unconstrained prob-
lem. This approach changes the constrained problem to the uncon-
strained problem where [/ 1is now redefined as
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¢ = min (V(x))nl + Xy (v®))? + kyp () (D~66)
X

where k1 > 0, k2 > 0, n; = 1 or 2, (V(x))2 is the penalty

for straying from V(x) = 0, and p(&) 1is the penalty for ap-
proaching x = 0.

All gradient search procedures require the computation of the
gradient of the function to be minimized either analytically or
numerically. The analytical gradient of this problem was extremely
complex to calculate and the calculations were prone to human error.
The numerical gradient computation was beset with step size prob-
lems. Step size was critical in that a single fixed step size was
not applicable in all coordinate directions; incorrect zero gradi-
ents were obtained in some directions. An adaptive step size was
tried, but the function was still too varied in each direction,
and finally the analytical gradient was resorted to after assurance
of its accuracy by three different persons' doing independent cal-
culations. The numerical gradient never agreed exactly (to six
significant figures) with the analytical gradient and it was de-
cided to accept the analytical gradient.

The minimization algorithm utilized was "MIN-ALL" [27], a con-
jugate gradient procedure developed at Grumman Aerospace Corpora-
tion based on the work of Davidon [28] and Fletcher and Powell [29]
to solve for the unconstrained { utilizing various combinations
of kl, kz, and 1‘11.

This procedure required 20 minutes of IBM 360/75 computer
time to evaluate f given Q, since the evaluation of a gradient
was required at every point along the search path. The lengthy
computation was a drawback, but the frequency of arriving at a
local minimum (even with the penalty functions) was far too high.
Since this procedural search was also intended for the 45-parameter
space search for the optimal Q-matrix, and this much uncertainty
and difficulty, not to mention the computational time, had been
encountered, it was a definite requirement to find another organ-
ized search procedure.

(iv) Random Search Solution of the Minimum Problem
Given the matrix pair Q, P satisfying the Liapunov equation

-Q = ATP + pA (D-67)
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where Q, P are positive definite symmetric matrices, and A 1is
stable. Define :

V() = xTPx (D-68)

so that

V(x) = - x1Qx + 2x'Pg(x) (D-69)

where g(x) is o(||x]]). The problem considered in this appendix
section is the determination of

2= min V(x) ' - (D-70)
X € E

where

E = {xl&(x) -0, x# o} . (D-71)

A random search algorithm was developed as a more effective
procedure to cover the state space more uniformly and avoid local
minimum problems. It utilizes the fact that if for a particular
point x1 in the n dimensional state-space with coryesponding
Liapunov function value c¢j = V(xj) = lex$ we have V(x1) > 0;
then the global minimum of V(x) on V(x) = 0 must lie inside
the ellipsoid consisting of the set of states x satisfying
x TPx < c¢1- The program thus randomly searches state points within
this ellipsoid until it again finds a point x9 corresponding to
V(x9) = X9Px9 = c9, ¢p < ¢1, with V > 0. This procedure is
iterated until convergence is achieved. The longer the program
runs, the higher the confidence in the closeness of the final
value to the true global minimum.

The search begins by arbitrarily choosing a point (nine-tuple)
in the state-space (see Fig. D-1 for a two dimensional version of
this technique), and a large value of V, called V5. (V5 =1

is very large; V, corresponds to r in the gradient search dis-

cussed previously.) The Liapunov matrix equation is still solved
for P;

V = x'Px (D-72)
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V>0

Opt = Largest V for Which VI nt 0

Fig. D-1 Two Dimensional Representation of Search Region
and

V= - x'Qx + 2x Pg(x) (D-73)
It can be seen from the expression for V that the eigenvalues of
P will determine the magnitude of the intercepts along the eigen-
vector directions by.

where M, are the eigenvalues of P and V
function V(x) at a particular point.

is related to a point in the y-space
pure rotation given by

is a value of the
A point in the x-space
(eigenvector space) by a
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x = Cy , (D-74)

where C is the normalized matrix of eigenvectors of P (see
Fig. D-2).

Fig. D-2 Relationship of State Space (x) to Its Associated
Eigenvector Space (y) 1in Two Dimensions

Multiplying n random numbers constrained to the interval
[-1, +1] by the n intercept values (YiINT) yields a random

vector interior to the hypercube containing V(x) < Vpip. Trans-
formation to the X-space allows a computation of V and V. If
V< 0, the vector is discarded and a new random selection is made.
If V() >0, and V&) < Vmin, @ new ellipsoid with corresponding
principal axes intercepts is computed, and the procedure is re-
peated using this new V ;. = V(x). The entire process is then
iterated using the updated value of Vi, until a good estimate

of the global minimum is achieved with a high level of confidence.
This is determined by the total number of random points selected

in state space, as discussed below.

Experimental results indicated that when the random numbers
were generated from a uniform distribution, a high percentage of
the resulting V's were larger than the V calculated at the
y-intercept point. In an attempt to compensate for this skewing
effect, the eigenvector coordinates were generated such that the
distribution near the boundaries would be attenuated. The Gaussian
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distribution model was tried and proved quite successful. Each
scaled vector component is generated independently via the same
Gaussian model (all zero mean, same variance). This gives a

Rayleigh type distribution in the scaled radial envelope, i.e.,

1 2 2
- exp(r°/25")
p(r) -~ k(O, n) 2

where 02 is the variance for the Gaussian distribution and n
is the dimension of the space. The tail of the radial distribu-
tion can be attenuated as desired by varying o. A further modi-
fication was made by introducing a switching function which
changes o after a certain number of iterations: for less than
1000 iterations, o = 1/6, while between 1000 and 5000 iterative

points o = 1/3.

Further improvements in efficiency were achieved by coupling
a linear bisection type search with the random,6search, as follows.
If a point x(1) is found corresponding to V x (1 > 0, a one
dimensional search along the line from =x(1) ¢to thé origin is em-
ployed to find a point kx(1), 0 < k <1 such that Ykx(1)) = 0.
Then the random search is continued in the smaller region
V(x) < V(kyxy). This deterministic search is illustrated in

Fig. D-3, and specifically for our program, proceeds to sequen-
tially bisect intervals along the line 0, x(1)) 15 times, which
gives excellent convergence on a zero crossing of V(x) along the

x(1) direction.

The number of points in any search was experimentally deter-
mined. Experience showed that even if up to 300,000 nine-tuples
were selected, the best estimate usually occurred before 5000
points were selected. Thus 5000 points became the standard number
of points x to be run during any one random search of state space.

To summarize briefly, all improvements in computing efficiency
have refined the program to the stage where it is capable of getting
good estimates of the global minimum of V(x) on V() =0, x # 0
for a given Q in about 30 seconds computing time, with results
comparable to earlier random search runs exceeding 25 minutes.
Figure D-4 shows a flow diagram of the Random Search Technique.

146



A

V<V, Vv >0

Fig. D-3 Schematic Representation of Biséction Deterministic Search
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Bi-Section
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Fig. D-4 Schematic Flow Chart of the Random Search of the State Space
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(v) A Random Search for the Maximum Problem

The random search of the 45-dimensional space of parameters
from which the Q-matrix is determined is termed the maximum prob-
lem, since what is ultimately being sought is the maximum volume
estimate of the domain of attraction by choice of Q.

An orderly method to search this space was required. Barron
[10] gave some insight into this problem wherein he termed his
method "an accelerated random search." Applied to this problem,
the technique requires a starting point (45-tuple), in the space
which is to be searched, from which is obtained an inverse volume
estimate (a carry-over from the original formulation for applica=-
tion of a gradient minimization routine).

A performance measure P 1is defined as

-1
._(V_O]-_.)_J (D -7 5)

where 1030 is arbitrary and chosen to keep P positive and in
the vicinity of unity. Since this first estimate is the best to
date, set P*, the best estimate, equal to P. A random step,

consistent with the parameter space constraints on A, 6, and ¢
(i.e., A>0, lol < 7w/2, lo| < 7)), 1is chosen by first defining

*
o= log P

picking a random number ¥, -1 <X L+ 1, for each parameter in
the set A, ¢, 6 and finally defining each step size as

2, 2
L -
su = (sgn X) g e X*/o (D-76)
where
1000 for %i i=1, 9
L= /2 for ei i=1, 28
4 for b, i=1, 8
i
and

d = arbitrary divisor (taken as 4 initially).
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Addition of the corresponding random step to the previous
values of A, 9, and ¢ results in another value of P. If
P > P¥, a step in the opposite direction is taken by setting
Au = - Au, the consistency with the constraints on A, 6, .and ¢
is checked again, and P 1is recalculated. If P is still greater
than g?, a new random step is chosen and added to the point asso-
ciated with P*. As long as P < P¥, we set the new value of
2* = P and the step size is doubled until P > E*, then a new
random step is instituted from the point (A, 6, ¢) associated
with P¥.

The accelerated random search is based on the concept of ran-
domly choosing a search direction and a step size, and searching
in that direction until a minimum is found. At the minimum, a new
random direction and step size are chosen and the process is re-
peated. As the search gets closer to the minimum, i.e., 2# de-
creases, the variance of the distribution from which the random
step is drawn is decreased to facilitate accurate determination of
the minimum.

The last change that was incorporated into the algorithm was
a "creeping aspect" of the random search by which the random steps
(Au's) Dbecome either larger or smaller as required. In particular,
if d4d = 4 1in the expression for Au, as prescribed above, and
say 100 directional steps are looked at with no improvement, then
d 1is halved, thereby doubling Au. Another one hundred trials
with no improvement cause another halving of d, etec. If an im-
provement is obtained, d is set back to 4 and the expansion
begins anew. If after, say, a total of 500 such trials where u
is 16 times its original value and no improvement has been found,
then d 1is set back to 4 and is consecutively doubled to decrease
the step size in the same manner as the step size was increased
above. Thus the creeping random search has an expanding and con-
tracting facility, which proved useful in determining the best

vol™l estimate.
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APPENDIX E
INTERPRETATION OF NUMERICAL RESULTS
This appendix describes explicitly the method used for com-

puting approximate numerical bounds on the physical variables
corresponding to a given volume estimate. Let the volume estimate

JQ = [£%/det p]° (E-1)

result from the matrix Q, the corresponding positive definite
matrix
P = CACT (E-2)

where A = diag (7, ..., Ay) 1is the diagonal matrix containing

the eigenvalues of P, the columns of the orthogonal matrix C
are the (normalized) eigenvectors of P, and the quadratic volume
estimate

xPx < 4 . (E-3)
Putting
y = Cx (E-4)

transforms (E-3) into the diagonal form

YTAY < 0. (E-5)

The maximum intercept of yTAy = J with the yi axis 1is at the
point

1
m _ 2 -
let CE denote the transpose of row i of the matrix C and let
(i) _ m
p:4 = ini

Then the entries of x(1) provide conservative estimates of the
maximum values of the physical variables; the vectors xj(i=1,...,n)
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are in fact the points in x-space at the extremities of the prin-
cipal axes of the hyperellipse xIPx = 4.

For example, consider the best run (number 6) at the Insti-
tute for Space Studies with

vol™l = 0.488 x 1037 (E-7)
4.16 -5.82 3.68 0 0 0 0 0 0
-5.82 8.37 -5.17 0 0 0 0 0 0
3.68 -5.17 3.26 0O 0 0 0 0 0
0 0 0 0.068 -0.122 0.311 0 0 0
Q=] o 0 0 -0.122 2.16 =0.537 O 0 0 )
0 0 0 0.311 -0.537 1.42 0 0 0
0 0 0 0 0 0  0.074 0.085 0.340
0 0 0 0 0 0  0.085 1.14 0.400
0 0 0 0 0 0  0.340 0.400 1.57 |
(E-8)
4= 9.604 x 10 ° (£-9)
2061 0 0 O O 0 0 0 0
0 32.7 0 0 0 0 0 0 0
O o 18.8 0 0O 0 0 0 0
0O 0 0 2.12 0 0 0 0 0
A=] 0 0 0 0 0.428 0 0 0 0 )
O 0 0 0 0 0.403 0 0 0
O 0 o0 0 0 0  0.00800 O 0
O 0 0 0 o0 0 0.00313 0
. 0o 0 o0 0 0 0 0.00142 ]
(E-10)
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[0.006 O 0 0.751 0 0 0.660 0 0
1.00 0 0 -0.008 0 0 0.008 0 0
0.011 O 0 0.660 0 0 -0.751 0 0
0 0.001 0 0 0 -0.223 0 -0.975 0
C= 0 1.00 0 0 0 0.031 0 ~-0.006 0 R
0 0.032 0 0 0 -0.974 0 0.223 0
0 0 -0.001 0 -2.24 0 0 0 -0.975
0 0 ~1.00 0 0.035 0 0 0 -0.007
| O 0 -0.035 0 -0.974 0 0 0 0.224 )
(E-11)
and corresponding vectors x(l) s eens x(g) given by
.39 x 1078 0 0 51 x 1074 0
.68 x 107° 0 0 -.54 x 107° 0
.82 x 1077 0 0 45 x 1074 0
) .25 x 1077 0 0 0
0 1.7 x 107° 0 0 0
0 .54 % 1078 0 o 0
0 0 32 % 1077 0 - .33 x 1074
0 0 -2.3 x 1077 0 .51 x 1077
0 0 .81 x 1076 0 -1.s x 1074
) .73 x 1073 0 o (E-12)
0 .91 x 1072 0 0
0 -.83 x 107 0 0
- .33 x 1074 0 -1.7 x 1072 0
47 x 107° 0 -1.0 x 107° 0
-1.5 x 1074 0 0.4 x 1073 0
0 0 ) -2.5 x 1073
0 ) ) -1.7 x 1070
0 0 0 57x 1073
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Finding the maximum first entry in these vectors yields 0.73 x 10-3

radians = 2.48 min as an estimate for the maximum absolute value
of xy = ¢ from which the physical system will settle. The vari-
ables x4 =6 and xy = ¢y are handled just as x;. The variables
X9 = Vi, X3 = Wy, X5 = Vg, Xg = Wy, Xg = Vy, and Xg = w; are
estimated in the same way, but the results are dimensionless so
that transformation to physical variables requires further scaling
by use of (A-48), namely

v£ = K K v; i=9, 0,y
(E-13)
KT
wi = 2 1 wl i=o0, 6, y
2

and then removing the zero equilibrium by use of (A-37) (note that
b = 6g = Yo = 0) namely

v, = Vf + Ih(? i= ¢, 9: 1
i i i
(E-14)
Tll
w, = w - h i=o9, 06,y
i i T-K i
2" m
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APPENDIX F

OTHER COMPUTATIONAL TECHNIQUES

‘(1) Algorithm Based on Selecting P Directly

Computer runs were made using a technique of generating a
positive definite P-matrix directly, without generating Q and
then solving the Liapunov equation

PA + ATP = - Q | (F-1)

for P. This work originated with the motive of speeding the
routine so that a great many matrices could be examined with a
minimum of machine time. The abort feature described previously
was essential to this plan, because the fact that P 1is positive
definite does not ensure the definiteness of Q. Use of the abort
procedure without direct generation of P had reduced the time
required to investigate a matrix from 30 seconds to an average of
about 10 seconds (2 seconds to search nine dimensional space and
8 seconds to generate Q and solve the Liapunov equation for P).
The time saved was not the only advantage of direct P-matrix
generation.

It soon became clear that direct generation of the P-matrix
has other advantages. The eigenvalues and eigenvectors of P
have direct physical interpretation in the nine dimensional state
space, so that picking P directly permits more insight into the
geometry of parameter space than the Q-generation procedure. 1In
addition, when the P-matrix is generated directly, the A-matrix
is unnecessary, and the time derivative X can be efficiently
computed directly from the nonlinear function. By setting x1 = o’
Xy = Vg, X3 = ®, X4 = 6/, Xg = Vg, Xg = Wy, x7 = ¢, xg = v;,
Xg = wy, the equations of Fig. A-8 may be written in the form
(for all initial momenta zero):

X, = " ax, - a(x5 sin X + Xg cOS xl) tan X,

Co- - b -
X, = bx2 + K sat(lOkA'Y1 + 9kx3) (F-2)
Xy = = 2(x3 + Avl)
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X, = - a(x5 cos X; ~ Xg sin xl)
x = - bx. + 2 sat (10d,,k(s8; cos T, + 48, cos T, + 2 x,))
5 5 k 12 1 2 2 1 2 76
Xe = - 2x6 - 2d12(cos FZABl + cos PlAﬁz) : (F-2)
. (Cont.)
Xy = - a(x5 sin x, + Xg cOS xl)/cos X,
X, = - b(x, - sat (lOd k(-AB, sin ', - AB, sin I, + 2 X ))
8 8 12 1 2 2 1 279
Xg = - 2x9 + 2d12(sin FZABI + sin PlABZ) ,
where
a =KK/I b= & k=K d., = 2 sgn(y;_ = v,.)
c' =’ Tm’ c’ 12 lc 2¢’ ’
(F-3)
o _,0_.,0_ - _
he = h¢ = h¢ o, Fl Avl + Y1’ P2 sz + Y9a

relates the present notation to that of Fig. A-8 and sat(u) = + 26
for 26 < u, sat(u) =u for + 26 >u > - 26, sat(u) = - 26 for
u < - 26. The main improvement in speed is in the calculation of
Avy{ and APj. Specifically, by using the upper sign for i =1
and the lower for i =2 in (F-5),

€., = €4 tan v
-1 a B ic
Ay, = tan ( ) , (F-4)
i 1+ ea(tan Yie + ea)tan Yie
where
tan Bic
= - F si _—
€, (cos X, 1) tan Yie sin x, tan X1 Zos Vi
tan B,
F cos %X, sin x —*2€ 4 cos x_ tan x, - sin x. sin x
7 4 cos 7. 7 1 7 4 °
ic (F-5)
tan Bic
- _ . . T oad __"ic
€g (cos X 1) + sin X, sin x, tan x; sin x, —— Tie
tan B,
* tan x, sin X, cos x ———2E . tan x, cos x, tan 4% .
1 4 7 cos Yie 1 4 ic
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The formula in Fig. A-8 is used to compute APBj unless round-off
error would be significant because AB; < 0.1, in which case
AB = sin”l u, where p is the iteratively obtained solution of

K = = a tan Bic +u, - (F-6)

in which

113 6
1 -a=cos B, = 1 -p°=1-4p° - R AT ,(F-7)

and letting bj = cos xj - 1, j = 4,7,
K= (b74-b4+-b7b4)tan Bici sin x7(1+-b4)cos Yici sin x, sin v, , (F-8)

where the upper sign is used for i =1 and the lower sign for
i = 2. The procedure is fast, and does not require double pre-
cision arithmetic.

Initial experiments with direct generation of the P-matrix
proceeded by using the classical Gershgorin theorem [31] and ap-
plying the results to the O0AOQ.

The methods shown in (F-2) through (F-8), when programmed for
an IBM 360/75, investigates over 50,000 P matrices per hour.
Additional compactness and speed are obtained by generation of
points x by letting x = Cy as in (D-74), where

n
¥ = ;R / (z €2> s (F-9)

in which R, £y, ..., €, are independent, each £; 1is uniformly
distributed on (-1, +1), and R 1is so distributed that

Prob(R < r) = rf, This procedure generates uniformly (by volume)
distributed random points y without discarding points as de-
scribed following Fig. D-2.

Initial experiments generated 35,000 positive definite ma-
trices P in about 15 minutes of computer time, revealing no pos-
itive definite matrices Q, i.e., the estimate of the domain was
J(P) = 0 for each P. The suspected reason is that relatively
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few positive definite matrices P have associated positive defi-
nite matrices Q. The best positive definite matrix from the
Q-generation method was therefore factored and used to generate a
starting P matrix for this method, with inconclusive results.

This procedure shows promise at the present writing, but the
investigators were unable to refine it further during the present

contract.

(ii) On Improved Estimates via Luré-Liapunov Functions

In developing the optimal quadratic estimate of the domain of
attraction we chose to use a quadratic form Liapunov function
because the resulting estimate is easy to visualize and interpret,
it compares favorably with more complex estimates, and because it
eliminates a number of computational problems. However, implicit
in this choice is the assumption that a sufficiently large family
of ellipsoids can be found such that none of the system trajec-
tories leave any member of the family once they are interior to
that member. This may be a severe restraint considering that the
system nonlinearities are not accounted for in the generic shape
of the estimate. This section describes a possible method for
accounting for some of the nonlinear effects in the generic shape
of the estimate.

Consider the fact that the system model can be rewritten to
identify the "dominant" nonlinearity as follows:

Ax + Bf2(0) + € (g(x) - Bfa(o)>

5 .
il

(F-10)
o= Cx

where A 1is as before, £f2(x) 1is the 3-vector of motor satura-
tion functions with linearized 3-vector argument o, B and C
are gain matrices, the term in parentheses is the new collection
of nonlinearities and ¢ 1is a perturbation parameter. Note that
for € = 1 we have the original system model, and for € =0 we
have the Popov approximation to the system model.

Now consider the Luré-Liapunov function
5

T
V(x, o) = x'Px + (£%(0)) do , P>0 (F-11)
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and its derivative

. T
V(x, o) = - x'Qx + x" (26B + AN £%(0) + (£°(0)) B£?(0)
- (F-12)

T
+ e {ZxTP + (£2()) Hg(X) - Bfa(c)}

The function V(x, o) 1is positive definite since the integral of
. . . .o a a
the saturation function vector 1is positive (fi(o) = fi(ci)>. The

relationship between P and Q 1is still given by the Liapunov
equation. It is required to show that V(x, o) is negative over
at least some finite neighborhood of the state space origin so
that LaSalle's theorem (Section 3) can be applied to obtain an
estimate.

Before we investigate this further, let us note the computa-
tional complexities introduced by this new formulation. First,
unless the quadratic form strongly dominates the integral term in
V(x, o) the surface V(x, o) = C will not be like an ellipsoid.
Therefore the search procedure for the minimum of V(x, o) on
V(x, 0) = 0 must be revised since it is based on putting a box
around the ellipsoid. Secondly, since the estimate is no longer
an ellipsoid the calculation of its volume is much more compli-
cated. Thus, before launching a substantial effort to solve these
problems one would like some assurance that the new procedure will
be an improvement. This can be obtained if the function V(x, o)
is negative definite for € = 0, 1i.e., if the Popov approximation
is globally asymptotically stable.

Kalman [30] has proven the equivalence of Luré-Liapunov func-
tions and Popov's condition, i.e., a Luré-Liapunov function of the
form given above can be constructed with negative definite deriva-
tive 1f the Popov theory shows the system to be absolutely stable.
Unfortunately, as stated in Appendix C, this cannot be done with
the theory as it now stands. Thus, this approach was not carried
any further in view of our inability to justify the effort that
would be required to solve the outstanding computational problems
indicated above.
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APPENDIX G

DETAILED FLOW CHARTS

This appendix contains flow charts of the stability
analysis algorithms where a Q-matrix is initially selected
and where a P-matrix is initially selected. Both algorithms are
basically the same, the primary difference being that in the
Q-matrix selection an inversion process is required to determine
the associated P-matrix (which is assuredly positive definite),
whereas in the P-matrix selection the resulting Q-matrix (not
necessarily positive definite) found by a matrix multiplication
mist be tested to ascertain its character. All Q-matrices that
result from picking a P-matrix must be discarded if they prove
to be semidefinite or negative definite because of the theory being
utilized,.

A thumbnail sketch of each of the subroutines shown in the
flow charts (Figs. G-1 and G-2) follows.

Subroutine AFX

This subroutine calculates the matrix A and the nonlinear
vector g(x) of the equations of motion =% = Ax + g(x).

Subroutine QGEN
This subroutine generates a positive definite matrix Q given

a set of n(n + 1)/2 independent variables as given in Appendix D
part (ii).

Subroutine DSRCH

This subroutine is the yandom search subroutine for the state
space where a min V with V = 0 1is to be achieved.

Subroutine PEAIQ
This subroutine solves the equation ATP + PA = - Q for a

positive definite P-matrix, given a stable A-matrix and a
positive definite Q-matrix.
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Subroutine DEIGN

This subroutine calculates the eigenvalues and eigenvectors
of the positive definite P-matrix.

The logic of the Q-parameter or P-parameter search is in-
cluded in the flow charts G-l and G-2, respectively, since this
directional random search procedure is applicable to most any sys-
tem.

Figure G-3 is a flow chart of the simulation of the system

where in most of the subroutines listed above were utilized and
augmented as listed below.

Subroutine DERIV

This subroutine is the set of equations of motion of the sys-
tem x = Ax + g(x).

Subroutine JINPG

This subroutine contains a fourth order Runge-Kutta integra-
tion scheme with fixed step size.
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